These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24151513)

  • 21. Circulating Exosomes Derived-miR-146a from Systemic Lupus Erythematosus Patients Regulates Senescence of Mesenchymal Stem Cells.
    Dong C; Zhou Q; Fu T; Zhao R; Yang J; Kong X; Zhang Z; Sun C; Bao Y; Ge X; Zhang Z; Lu Z; Li J; Zheng W; Gu Z; Ji J
    Biomed Res Int; 2019; 2019():6071308. PubMed ID: 31428639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adult mesenchymal stem cell ageing interplays with depressed mitochondrial Ndufs6.
    Zhang Y; Guo L; Han S; Chen L; Li C; Zhang Z; Hong Y; Zhang X; Zhou X; Jiang D; Liang X; Qiu J; Zhang J; Li X; Zhong S; Liao C; Yan B; Tse HF; Lian Q
    Cell Death Dis; 2020 Dec; 11(12):1075. PubMed ID: 33323934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of miR-20a-5p in mesenchymal stem cell derived-exosomes from systemic lupus erythematosus patients restored therapeutic effect and Treg immune regulation.
    Ji J; Liang Q; He Q; Chen T; Feng G; Guo H; Wang Y; Xu Y; Chen P; Dong C; Zhao R; Yang J; Sha X; Cao H; Li J; Xia Y; Yang M; Gu Z
    Eur J Pharmacol; 2024 Sep; 979():176862. PubMed ID: 39068974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy.
    Cipriani P; Di Benedetto P; Liakouli V; Del Papa B; Di Padova M; Di Ianni M; Marrelli A; Alesse E; Giacomelli R
    Clin Exp Immunol; 2013 Aug; 173(2):195-206. PubMed ID: 23607751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dicer1 downregulation by multiple myeloma cells promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells.
    Guo J; Zhao Y; Fei C; Zhao S; Zheng Q; Su J; Wu D; Li X; Chang C
    Cell Death Dis; 2018 May; 9(5):512. PubMed ID: 29724992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells.
    Ho PJ; Yen ML; Tang BC; Chen CT; Yen BL
    Antioxid Redox Signal; 2013 May; 18(15):1895-905. PubMed ID: 23088254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen alleviates cellular senescence via regulation of ROS/p53/p21 pathway in bone marrow-derived mesenchymal stem cells in vivo.
    Zhang W; Huang C; Sun A; Qiao L; Zhang X; Huang J; Sun X; Yang X; Sun S
    Biomed Pharmacother; 2018 Oct; 106():1126-1134. PubMed ID: 30119179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Platelet-Derived Growth Factor-BB Protects Mesenchymal Stem Cells (MSCs) Derived From Immune Thrombocytopenia Patients Against Apoptosis and Senescence and Maintains MSC-Mediated Immunosuppression.
    Zhang JM; Feng FE; Wang QM; Zhu XL; Fu HX; Xu LP; Liu KY; Huang XJ; Zhang XH
    Stem Cells Transl Med; 2016 Dec; 5(12):1631-1643. PubMed ID: 27471307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells.
    Facchin F; Alviano F; Canaider S; Bianconi E; Rossi M; Bonsi L; Casadei R; Biava PM; Ventura C
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31146388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments.
    Cmielova J; Havelek R; Soukup T; Jiroutová A; Visek B; Suchánek J; Vavrova J; Mokry J; Muthna D; Bruckova L; Filip S; English D; Rezacova M
    Int J Radiat Biol; 2012 May; 88(5):393-404. PubMed ID: 22348537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of p16INK4a and p21CIP1 pathways to induction of premature senescence of human endothelial cells: permissive role of p53.
    Chen J; Huang X; Halicka D; Brodsky S; Avram A; Eskander J; Bloomgarden NA; Darzynkiewicz Z; Goligorsky MS
    Am J Physiol Heart Circ Physiol; 2006 Apr; 290(4):H1575-86. PubMed ID: 16243918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TZAP plays an inhibitory role in the self-renewal of porcine mesenchymal stromal cells and is implicated the regulation of premature senescence via the p53 pathway.
    Bie YN; Gu P; Chen YT; Zhou XX; Tian YG; Yang Q; Li HY; Lin X; Guan YH; Lin TY; Lu X; Shen HF; Fang TX; Liu YM; Xiao D; Gu WW
    J Transl Med; 2019 Mar; 17(1):72. PubMed ID: 30845965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction of Apoptosis Coupled to Endoplasmic Reticulum Stress through Regulation of CHOP and JNK in Bone Marrow Mesenchymal Stem Cells from Patients with Systemic Lupus Erythematosus.
    Guo G; Meng Y; Tan W; Xia Y; Cheng C; Chen X; Gu Z
    J Immunol Res; 2015; 2015():183738. PubMed ID: 26090483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human colorectal cancer derived-MSCs promote tumor cells escape from senescence via P53/P21 pathway.
    Li G; Zhang R; Zhang X; Shao S; Hu F; Feng Y
    Clin Transl Oncol; 2020 Apr; 22(4):503-511. PubMed ID: 31218648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postprandial triglyceride-rich lipoproteins-induced premature senescence of adipose-derived mesenchymal stem cells via the SIRT1/p53/Ac-p53/p21 axis through oxidative mechanism.
    Xiang QY; Tian F; Du X; Xu J; Zhu LY; Guo LL; Wen T; Liu YS; Liu L
    Aging (Albany NY); 2020 Dec; 12(24):26080-26094. PubMed ID: 33316776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Complement of the canonical p53/p21 pathway.
    Xu S; Wu W; Huang H; Huang R; Xie L; Su A; Liu S; Zheng R; Yuan Y; Zheng HL; Sun X; Xiong XD; Liu X
    Aging Cell; 2019 Jun; 18(3):e12918. PubMed ID: 30848072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TP53 and p21 (CDKN1A) polymorphisms and the risk of systemic lupus erythematosus.
    Macedo JMB; Silva AL; Pinto AC; Landeira LFL; Portari EA; Santos-Rebouças CB; Klumb EM
    Adv Rheumatol; 2023 Aug; 63(1):43. PubMed ID: 37605254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interferon-γ-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus.
    Schena F; Gambini C; Gregorio A; Mosconi M; Reverberi D; Gattorno M; Casazza S; Uccelli A; Moretta L; Martini A; Traggiai E
    Arthritis Rheum; 2010 Sep; 62(9):2776-86. PubMed ID: 20496367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression profile reveals abnormalities of multiple signaling pathways in mesenchymal stem cell derived from patients with systemic lupus erythematosus.
    Tang Y; Ma X; Zhang H; Gu Z; Hou Y; Gilkeson GS; Lu L; Zeng X; Sun L
    Clin Dev Immunol; 2012; 2012():826182. PubMed ID: 22966240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knockdown of p21(Cip1/Waf1) enhances proliferation, the expression of stemness markers, and osteogenic potential in human mesenchymal stem cells.
    Yew TL; Chiu FY; Tsai CC; Chen HL; Lee WP; Chen YJ; Chang MC; Hung SC
    Aging Cell; 2011 Apr; 10(2):349-61. PubMed ID: 21342417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.