These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24151995)

  • 21. Effects of reproductive compensation, gamete discounting and reproductive assurance on mating-system diversity in hermaphrodites.
    Harder LD; Richards SA; Routley MB
    Evolution; 2008 Jan; 62(1):157-72. PubMed ID: 18067573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-dependent fecundity associates with latitude in Caenorhabditis briggsae.
    Prasad A; Croydon-Sugarman MJ; Murray RL; Cutter AD
    Evolution; 2011 Jan; 65(1):52-63. PubMed ID: 20731713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. No correlation between inbreeding depression and delayed selfing in the freshwater snail Physa acuta.
    Sebastián Escobar J; Epinat G; Sarda V; David P
    Evolution; 2007 Nov; 61(11):2655-70. PubMed ID: 17894808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How selfing, inbreeding depression, and pollen limitation impact nuclear-cytoplasmic gynodioecy: a model.
    Dornier A; Dufay M
    Evolution; 2013 Sep; 67(9):2674-87. PubMed ID: 24033175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlated evolution of mating strategy and inbreeding depression within and among populations of the hermaphroditic snail Physa acuta.
    Escobar JS; Facon B; Jarne P; Goudet J; David P
    Evolution; 2009 Nov; 63(11):2790-804. PubMed ID: 19545264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity in mating behavior of hermaphroditic and male-female Caenorhabditis nematodes.
    Garcia LR; LeBoeuf B; Koo P
    Genetics; 2007 Apr; 175(4):1761-71. PubMed ID: 17277358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lack of early inbreeding depression and distribution of selfing rates in the neotropical emergent tree Ceiba pentandra: Assessment from several reproductive events.
    Lobo JA; Jiménez D; Solís-Hernández W; Fuchs EJ
    Am J Bot; 2015 Jun; 102(6):983-91. PubMed ID: 26101422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phylotranscriptomics of Pristionchus Nematodes Reveals Parallel Gene Loss in Six Hermaphroditic Lineages.
    Rödelsperger C; Röseler W; Prabh N; Yoshida K; Weiler C; Herrmann M; Sommer RJ
    Curr Biol; 2018 Oct; 28(19):3123-3127.e5. PubMed ID: 30245109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global population genetic structure of Caenorhabditis remanei reveals incipient speciation.
    Dey A; Jeon Y; Wang GX; Cutter AD
    Genetics; 2012 Aug; 191(4):1257-69. PubMed ID: 22649079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mating System Transitions Drive Life Span Evolution in Pristionchus Nematodes.
    Weadick CJ; Sommer RJ
    Am Nat; 2016 Apr; 187(4):517-31. PubMed ID: 27028079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epistasis, inbreeding depression, and the evolution of self-fertilization.
    Abu Awad D; Roze D
    Evolution; 2020 Jul; 74(7):1301-1320. PubMed ID: 32386235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural variation of outcrossing in the hermaphroditic nematode Pristionchus pacificus.
    Click A; Savaliya CH; Kienle S; Herrmann M; Pires-daSilva A
    BMC Evol Biol; 2009 Apr; 9():75. PubMed ID: 19379507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selection at linked sites in the partial selfer Caenorhabditis elegans.
    Cutter AD; Payseur BA
    Mol Biol Evol; 2003 May; 20(5):665-73. PubMed ID: 12679551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutations in two independent pathways are sufficient to create hermaphroditic nematodes.
    Baldi C; Cho S; Ellis RE
    Science; 2009 Nov; 326(5955):1002-5. PubMed ID: 19965511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced mate availability leads to evolution of self-fertilization and purging of inbreeding depression in a hermaphrodite.
    Noël E; Chemtob Y; Janicke T; Sarda V; Pélissié B; Jarne P; David P
    Evolution; 2016 Mar; 70(3):625-40. PubMed ID: 26899922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional pleiotropy and mating system evolution in plants: frequency-independent mating.
    Jordan CY; Otto SP
    Evolution; 2012 Apr; 66(4):957-72. PubMed ID: 22486682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Males, Outcrossing, and Sexual Selection in
    Cutter AD; Morran LT; Phillips PC
    Genetics; 2019 Sep; 213(1):27-57. PubMed ID: 31488593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Partial Selfing Can Reduce Genetic Loads While Maintaining Diversity During Experimental Evolution.
    Chelo IM; Afonso B; Carvalho S; Theologidis I; Goy C; Pino-Querido A; Proulx SR; Teotónio H
    G3 (Bethesda); 2019 Sep; 9(9):2811-2821. PubMed ID: 31278175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The opportunity for balancing selection in experimental populations of Caenorhabditis elegans.
    Chelo IM; Teotónio H
    Evolution; 2013 Jan; 67(1):142-56. PubMed ID: 23289568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular population genetics and phenotypic sensitivity to ethanol for a globally diverse sample of the nematode Caenorhabditis briggsae.
    Cutter AD; Yan W; Tsvetkov N; Sunil S; Félix MA
    Mol Ecol; 2010 Feb; 19(4):798-809. PubMed ID: 20088888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.