BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24152072)

  • 1. Electrophysiological characterization of uncoupled mutants of LacY.
    Gaiko O; Bazzone A; Fendler K; Kaback HR
    Biochemistry; 2013 Nov; 52(46):8261-6. PubMed ID: 24152072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between residues Glu269 (helix VIII) and His322 (helix X) of the lactose permease of Escherichia coli is essential for substrate binding.
    He MM; Kaback HR
    Biochemistry; 1997 Nov; 36(44):13688-92. PubMed ID: 9354639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine 302 (helix IX) in the lactose permease of Escherichia coli is in close proximity to glutamate 269 (helix VIII) as well as glutamate 325.
    He MM; Voss J; Hubbell WL; Kaback HR
    Biochemistry; 1997 Nov; 36(44):13682-7. PubMed ID: 9354638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating conformational equilibria in the lactose permease of Escherichia coli.
    Weinglass AB; Sondej M; Kaback HR
    J Mol Biol; 2002 Jan; 315(4):561-71. PubMed ID: 11812130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering conformational flexibility in the lactose permease of Escherichia coli: use of glycine-scanning mutagenesis to rescue mutant Glu325-->Asp.
    Weinglass AB; Smirnova IN; Kaback HR
    Biochemistry; 2001 Jan; 40(3):769-76. PubMed ID: 11170394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the irreplaceable residues in the LacY alternating access mechanism.
    Zhou Y; Jiang X; Kaback HR
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12438-42. PubMed ID: 22802658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements.
    Carrasco N; Püttner IB; Antes LM; Lee JA; Larigan JD; Lolkema JS; Roepe PD; Kaback HR
    Biochemistry; 1989 Mar; 28(6):2533-9. PubMed ID: 2567181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of designed metal-binding sites to study helix proximity in the lactose permease of Escherichia coli. 2. Proximity of helix IX (Arg302) with helix X (His322 and Glu325).
    He MM; Voss J; Hubbell WL; Kaback HR
    Biochemistry; 1995 Dec; 34(48):15667-70. PubMed ID: 7495796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal antibody 4B1 alters the pKa of a carboxylic acid at position 325 (helix X) of the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Aug; 35(31):10166-71. PubMed ID: 8756481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological characterization of LacY.
    Garcia-Celma JJ; Smirnova IN; Kaback HR; Fendler K
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7373-8. PubMed ID: 19383792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delineating electrogenic reactions during lactose/H+ symport.
    Garcia-Celma JJ; Ploch J; Smirnova I; Kaback HR; Fendler K
    Biochemistry; 2010 Jul; 49(29):6115-21. PubMed ID: 20568736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residues in the H+ translocation site define the pKa for sugar binding to LacY.
    Smirnova I; Kasho V; Sugihara J; Choe JY; Kaback HR
    Biochemistry; 2009 Sep; 48(37):8852-60. PubMed ID: 19689129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical rescue of Asp237-->Ala and Lys358-->Ala mutants in the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Oct; 35(41):13363-7. PubMed ID: 8873603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfhydryl oxidation of mutants with cysteine in place of acidic residues in the lactose permease.
    Voss J; Sun J; Venkatesan P; Kaback HR
    Biochemistry; 1998 Jun; 37(22):8191-6. PubMed ID: 9609715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of distance and orientation between arginine-302, histidine-322, and glutamate-325 on the activity of lac permease from Escherichia coli.
    Lee JA; Püttner IB; Kaback HR
    Biochemistry; 1989 Mar; 28(6):2540-4. PubMed ID: 2567182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling.
    Jung K; Jung H; Kaback HR
    Biochemistry; 1994 Apr; 33(13):3980-5. PubMed ID: 8142402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of site-directed mutants in the lac permease of Escherichia coli. 1. Replacement of histidine residues.
    Püttner IB; Sarkar HK; Padan E; Lolkema JS; Kaback HR
    Biochemistry; 1989 Mar; 28(6):2525-33. PubMed ID: 2659072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Glu126 and Arg144, two residues that are indispensable for substrate binding in the lactose permease of Escherichia coli.
    Sahin-Tóth M; le Coutre J; Kharabi D; le Maire G; Lee JC; Kaback HR
    Biochemistry; 1999 Jan; 38(2):813-9. PubMed ID: 9888822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arg302 governs the pK
    Grytsyk N; Santos Seiça AF; Sugihara J; Kaback HR; Hellwig P
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4934-4939. PubMed ID: 30792352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helices VII and X in the lactose permease of Escherichia coli: proximity and ligand-induced distance changes.
    Zhang W; Guan L; Kaback HR
    J Mol Biol; 2002 Jan; 315(1):53-62. PubMed ID: 11771965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.