These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2415212)

  • 1. Axonal transport of the voltage-dependent Na+ channel protein identified by its tetrodotoxin binding site in rat sciatic nerves.
    Lombet A; Laduron P; Mourre C; Jacomet Y; Lazdunski M
    Brain Res; 1985 Oct; 345(1):153-8. PubMed ID: 2415212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal transport of Na+,K+-ATPase identified as a ouabain binding site in rat sciatic nerve.
    Lombet A; Laduron P; Mourre C; Jacomet Y; Lazdunski M
    Neurosci Lett; 1986 Feb; 64(2):177-83. PubMed ID: 2421205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoradiographic localization of tetrodotoxin-sensitive Na+ channels in rat brain.
    Mourre C; Lombet A; Lazdunski M
    Neurosci Lett; 1984 Nov; 52(1-2):31-5. PubMed ID: 6098876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes.
    Renaud JF; Kazazoglou T; Lombet A; Chicheportiche R; Jaimovich E; Romey G; Lazdunski M
    J Biol Chem; 1983 Jul; 258(14):8799-805. PubMed ID: 6306000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons.
    Medvedeva YV; Kim MS; Schnizler K; Usachev YM
    Neuroscience; 2009 Mar; 159(2):559-69. PubMed ID: 19162133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of voltage-dependent Na+ channels identified by high-affinity receptors for tetrodotoxin and saxitoxin in rat and human brains: quantitative autoradiographic analysis.
    Mourre C; Moll C; Lombet A; Lazdunski M
    Brain Res; 1988 May; 448(1):128-39. PubMed ID: 2455581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of [3H]lysine-tetrodotoxin binding to sodium channel proteins by conotoxin GIII.
    Yanagawa Y; Abe T; Satake M
    Neurosci Lett; 1986 Feb; 64(1):7-12. PubMed ID: 2421202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired axonal transport of opiate and muscarinic receptors in streptozocin-diabetic rats.
    Laduron PM; Janssen PF
    Brain Res; 1986 Aug; 380(2):359-62. PubMed ID: 2428426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninactivating, tetrodotoxin-sensitive Na+ conductance in peripheral axons.
    Tokuno HA; Kocsis JD; Waxman SG
    Muscle Nerve; 2003 Aug; 28(2):212-7. PubMed ID: 12872326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid retrograde transport of proteins in sensory neurons in rats.
    Fink DJ; Purkiss D; Mata M
    Brain Res; 1985 Oct; 345(2):394-7. PubMed ID: 2412653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axoplasmic transport and possible recycling of opiate receptors labelled with 3H-lofentanil.
    Laduron PM; Janssen PF
    Life Sci; 1982 Aug; 31(5):457-62. PubMed ID: 6182434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal transport of the synaptic vesicle monoamine carrier identified by [3H]dihydrotetrabenazine binding in rat sciatic nerve.
    Scherman D; Janssen PF; Laduron PM
    Neurosci Lett; 1987 Jun; 77(2):231-6. PubMed ID: 2439958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium Channel Na
    Klein AH; Vyshnevska A; Hartke TV; De Col R; Mankowski JL; Turnquist B; Bosmans F; Reeh PW; Schmelz M; Carr RW; Ringkamp M
    J Neurosci; 2017 May; 37(20):5204-5214. PubMed ID: 28450535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of age on axoplasmic transport of cholinesterase in rat sciatic nerves.
    McMartin DN; O'Connor JA
    Mech Ageing Dev; 1979 May; 10(3-4):241-8. PubMed ID: 88552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification in mammalian brain of an endogenous substance with Na+ channel blocking activities similar to those of tetrodotoxin.
    Lombet A; Fosset M; Romey G; Jacomet Y; Lazdunski M
    Brain Res; 1987 Aug; 417(2):327-34. PubMed ID: 2443217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoreactive somatostatin distribution and axoplasmic transport in rat peripheral nerve.
    Rasool CG; Schwartz AL; Bollinger JA; Reichlin S; Bradley WG
    Endocrinology; 1981 Mar; 108(3):996-1001. PubMed ID: 6161803
    [No Abstract]   [Full Text] [Related]  

  • 17. Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve.
    González C; Cánovas J; Fresno J; Couve E; Court FA; Couve A
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1823-8. PubMed ID: 26839409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal transport of opiate receptors in capsaicin-sensitive neurones.
    Laduron PM
    Brain Res; 1984 Feb; 294(1):157-60. PubMed ID: 6199089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered expression of sodium channel distribution in the dorsal root ganglion after gradual elongation of rat sciatic nerves.
    Ohno K; Yokota A; Hirofuji S; Kanbara K; Ohtsuka H; Kinoshita M
    J Orthop Res; 2010 Apr; 28(4):481-6. PubMed ID: 19877286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast axonal transport in rat sciatic nerve. Inhibition by pineal indoles.
    Prevedello MR; Ritta MN; Cardinali DP
    Neurosci Lett; 1979 Jun; 13(1):29-34. PubMed ID: 88700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.