These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 24152322)
1. Spatial chaos and complexity in the intracellular space of cancer and normal cells. Pham TD; Ichikawa K Theor Biol Med Model; 2013 Oct; 10():62. PubMed ID: 24152322 [TBL] [Abstract][Full Text] [Related]
2. A Novel Measure Inspired by Lyapunov Exponents for the Characterization of Dynamics in State-Transition Networks. Sándor B; Schneider B; Lázár ZI; Ercsey-Ravasz M Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33445685 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Chaotic Dynamics by the Extended Entropic Chaos Degree. Inoue K Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741547 [TBL] [Abstract][Full Text] [Related]
4. Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems. Petrovskii S; Li BL; Malchow H Bull Math Biol; 2003 May; 65(3):425-46. PubMed ID: 12749533 [TBL] [Abstract][Full Text] [Related]
5. An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps. Inoue K Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828209 [TBL] [Abstract][Full Text] [Related]
6. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
7. The Effects of Padé Numerical Integration in Simulation of Conservative Chaotic Systems. Butusov D; Karimov A; Tutueva A; Kaplun D; Nepomuceno EG Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267076 [TBL] [Abstract][Full Text] [Related]
8. A computational framework for finding parameter sets associated with chaotic dynamics. Koshy-Chenthittayil S; Dimitrova E; Jenkins EW; Dean BC In Silico Biol; 2021; 14(1-2):41-51. PubMed ID: 33896838 [TBL] [Abstract][Full Text] [Related]
9. Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics. Sun Y; Zhou D; Rangan AV; Cai D J Comput Neurosci; 2010 Apr; 28(2):247-66. PubMed ID: 20020192 [TBL] [Abstract][Full Text] [Related]
10. Insights on correlation dimension from dynamics mapping of three experimental nonlinear laser systems. McMahon CJ; Toomey JP; Kane DM PLoS One; 2017; 12(8):e0181559. PubMed ID: 28837602 [TBL] [Abstract][Full Text] [Related]
11. Chaos and physiology: deterministic chaos in excitable cell assemblies. Elbert T; Ray WJ; Kowalik ZJ; Skinner JE; Graf KE; Birbaumer N Physiol Rev; 1994 Jan; 74(1):1-47. PubMed ID: 8295931 [TBL] [Abstract][Full Text] [Related]
12. Chaotic dynamics of resting ventilatory flow in humans assessed through noise titration. Wysocki M; Fiamma MN; Straus C; Poon CS; Similowski T Respir Physiol Neurobiol; 2006 Aug; 153(1):54-65. PubMed ID: 16303337 [TBL] [Abstract][Full Text] [Related]
13. Complex dynamics in simple Hopfield neural networks. Yang XS; Huang Y Chaos; 2006 Sep; 16(3):033114. PubMed ID: 17014219 [TBL] [Abstract][Full Text] [Related]
14. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
15. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
16. Chaotic dynamics of one-dimensional systems with periodic boundary conditions. Kumar P; Miller BN Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062918. PubMed ID: 25615175 [TBL] [Abstract][Full Text] [Related]
17. Significance of using a nonlinear analysis technique, the Lyapunov exponent, on the understanding of the dynamics of the cardiorespiratory system in rats. Zeren T; Özbek M; Kutlu N; Akilli M Turk J Med Sci; 2016 Jan; 46(1):159-65. PubMed ID: 27511350 [TBL] [Abstract][Full Text] [Related]
18. Topological invariants in the study of a chaotic food chain system. Duarte J; Januário C; Martins N Chaos; 2008 Jun; 18(2):023109. PubMed ID: 18601476 [TBL] [Abstract][Full Text] [Related]
20. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory. Tewatia DK; Tolakanahalli RP; Paliwal BR; Tomé WA Phys Med Biol; 2011 Apr; 56(7):2161-81. PubMed ID: 21389355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]