BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 24152561)

  • 1. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms.
    Monroig Ó; Tocher DR; Navarro JC
    Mar Drugs; 2013 Oct; 11(10):3998-4018. PubMed ID: 24152561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production.
    Moi IM; Leow ATC; Ali MSM; Rahman RNZRA; Salleh AB; Sabri S
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5811-5826. PubMed ID: 29749565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty Acids of Marine Mollusks: Impact of Diet, Bacterial Symbiosis and Biosynthetic Potential.
    Zhukova NV
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31835867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Deep-Sea Ecosystems Using Marker Fatty Acids: Sources of Essential Polyunsaturated Fatty Acids in Abyssal Megafauna.
    Svetashev VI
    Mar Drugs; 2021 Dec; 20(1):. PubMed ID: 35049873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-methylene-interrupted fatty acids from marine invertebrates: Occurrence, characterization and biological properties.
    Barnathan G
    Biochimie; 2009 Jun; 91(6):671-8. PubMed ID: 19376188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique fatty acid desaturase capacities uncovered in
    Kabeya N; Gür İ; Oboh A; Evjemo JO; Malzahn AM; Hontoria F; Navarro JC; Monroig Ó
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1804):20190654. PubMed ID: 32536307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methyl-end desaturases with ∆12 and ω3 regioselectivities enable the de novo PUFA biosynthesis in the cephalopod Octopus vulgaris.
    Garrido D; Kabeya N; Hontoria F; Navarro JC; Reis DB; Martín MV; Rodríguez C; Almansa E; Monroig Ó
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Aug; 1864(8):1134-1144. PubMed ID: 31048041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of essential fatty acids in trophometabolic interactions in the freshwater ecosystems (a review)].
    Sushchik NN
    Zh Obshch Biol; 2008; 69(4):299-316. PubMed ID: 18792646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prokaryotes and the input of polyunsaturated fatty acids to the marine food web.
    Nichols DS
    FEMS Microbiol Lett; 2003 Feb; 219(1):1-7. PubMed ID: 12594015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of long-chain polyunsaturated fatty acids in the razor clam Sinonovacula constricta: Characterization of four fatty acyl elongases and a novel desaturase capacity.
    Ran Z; Xu J; Liao K; Monroig Ó; Navarro JC; Oboh A; Jin M; Zhou Q; Zhou C; Tocher DR; Yan X
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Aug; 1864(8):1083-1090. PubMed ID: 31002943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and functional characterisation of two elovl4 elongases involved in the biosynthesis of very long-chain (>C
    Jin M; Monroig Ó; Navarro JC; Tocher DR; Zhou QC
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Oct; 212():41-50. PubMed ID: 28668330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae as a Source for VLC-PUFA Production.
    Khozin-Goldberg I; Leu S; Boussiba S
    Subcell Biochem; 2016; 86():471-510. PubMed ID: 27023247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty Acid Profiles and Production in Marine Phytoplankton.
    Jónasdóttir SH
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30836652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms.
    Qiu X; Xie X; Meesapyodsuk D
    Prog Lipid Res; 2020 Jul; 79():101047. PubMed ID: 32540152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of Polyunsaturated Fatty Acids in Sea Urchins: Molecular and Functional Characterisation of Three Fatty Acyl Desaturases from Paracentrotus lividus (Lamark 1816).
    Kabeya N; Sanz-Jorquera A; Carboni S; Davie A; Oboh A; Monroig O
    PLoS One; 2017; 12(1):e0169374. PubMed ID: 28052125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medicinal benefits of marine invertebrates: sources for discovering natural drug candidates.
    De Zoysa M
    Adv Food Nutr Res; 2012; 65():153-69. PubMed ID: 22361185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of miR-145 as a Key Regulator Involved in LC-PUFA Biosynthesis by Targeting
    Chen C; Zhang M; Li Y; Wang S; Xie D; Wen X; Hu Y; Shen J; He X; You C; Tocher DR; Monroig Ó
    J Agric Food Chem; 2020 Dec; 68(51):15123-15133. PubMed ID: 33291871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology.
    Khozin-Goldberg I; Iskandarov U; Cohen Z
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):905-15. PubMed ID: 21720821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications.
    Romano G; Almeida M; Varela Coelho A; Cutignano A; Gonçalves LG; Hansen E; Khnykin D; Mass T; Ramšak A; Rocha MS; Silva TH; Sugni M; Ballarin L; Genevière AM
    Mar Drugs; 2022 Mar; 20(4):. PubMed ID: 35447892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future aquafeeds may compromise reproductive fitness in a marine invertebrate.
    White CA; Dworjanyn SA; Nichols PD; Mos B; Dempster T
    Mar Environ Res; 2016 Dec; 122():67-75. PubMed ID: 27686389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.