These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 24152713)
1. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. Ricci JN; Coleman ML; Welander PV; Sessions AL; Summons RE; Spear JR; Newman DK ISME J; 2014 Mar; 8(3):675-684. PubMed ID: 24152713 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria. Ricci JN; Michel AJ; Newman DK Geobiology; 2015 May; 13(3):267-77. PubMed ID: 25630231 [TBL] [Abstract][Full Text] [Related]
3. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Welander PV; Coleman ML; Sessions AL; Summons RE; Newman DK Proc Natl Acad Sci U S A; 2010 May; 107(19):8537-42. PubMed ID: 20421508 [TBL] [Abstract][Full Text] [Related]
4. Diversity of cyanobacterial biomarker genes from the stromatolites of Shark Bay, Western Australia. Garby TJ; Walter MR; Larkum AW; Neilan BA Environ Microbiol; 2013 May; 15(5):1464-75. PubMed ID: 22712472 [TBL] [Abstract][Full Text] [Related]
5. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Summons RE; Jahnke LL; Hope JM; Logan GA Nature; 1999 Aug; 400(6744):554-7. PubMed ID: 10448856 [TBL] [Abstract][Full Text] [Related]
6. Lack of Methylated Hopanoids Renders the Cyanobacterium Nostoc punctiforme Sensitive to Osmotic and pH Stress. Garby TJ; Matys ED; Ongley SE; Salih A; Larkum AWD; Walter MR; Summons RE; Neilan BA Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455341 [TBL] [Abstract][Full Text] [Related]
7. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. Voorhies AA; Biddanda BA; Kendall ST; Jain S; Marcus DN; Nold SC; Sheldon ND; Dick GJ Geobiology; 2012 May; 10(3):250-67. PubMed ID: 22404795 [TBL] [Abstract][Full Text] [Related]
8. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Sallstedt T; Bengtson S; Broman C; Crill PM; Canfield DE Geobiology; 2018 Mar; 16(2):139-159. PubMed ID: 29380943 [TBL] [Abstract][Full Text] [Related]
9. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Hamilton TL; Bryant DA; Macalady JL Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614 [TBL] [Abstract][Full Text] [Related]
10. Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Saghaï A; Zivanovic Y; Moreira D; Benzerara K; Bertolino P; Ragon M; Tavera R; López-Archilla AI; López-García P Environ Microbiol; 2016 Dec; 18(12):4990-5004. PubMed ID: 27422734 [TBL] [Abstract][Full Text] [Related]
11. Metagenomic insight into taxonomic composition, environmental filtering and functional redundancy for shaping worldwide modern non-lithifying microbial mats. Viladomat Jasso M; García-Ulloa M; Zapata-Peñasco I; Eguiarte LE; Souza V PeerJ; 2024; 12():e17412. PubMed ID: 38827283 [TBL] [Abstract][Full Text] [Related]
12. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Vavourakis CD; Andrei AS; Mehrshad M; Ghai R; Sorokin DY; Muyzer G Microbiome; 2018 Sep; 6(1):168. PubMed ID: 30231921 [TBL] [Abstract][Full Text] [Related]
13. Microbial communities and organic biomarkers in a Proterozoic-analog sinkhole. Hamilton TL; Welander PV; Albrecht HL; Fulton JM; Schaperdoth I; Bird LR; Summons RE; Freeman KH; Macalady JL Geobiology; 2017 Nov; 15(6):784-797. PubMed ID: 29035021 [TBL] [Abstract][Full Text] [Related]
14. Morphological record of oxygenic photosynthesis in conical stromatolites. Bosak T; Liang B; Sim MS; Petroff AP Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10939-43. PubMed ID: 19564621 [TBL] [Abstract][Full Text] [Related]
15. 2-Methylhopanoids in geographically distinct, arid biological soil crusts are primarily cyanobacterial in origin. Garby TJ; Jordan M; Timms V; Walter MR; Neilan BA Environ Microbiol Rep; 2022 Feb; 14(1):164-169. PubMed ID: 34898023 [TBL] [Abstract][Full Text] [Related]
16. 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implications. Doughty DM; Hunter RC; Summons RE; Newman DK Geobiology; 2009 Dec; 7(5):524-32. PubMed ID: 19811542 [TBL] [Abstract][Full Text] [Related]
18. The occurrence of 2-methylhopanoids in modern bacteria and the geological record. Naafs BDA; Bianchini G; Monteiro FM; Sánchez-Baracaldo P Geobiology; 2022 Jan; 20(1):41-59. PubMed ID: 34291867 [TBL] [Abstract][Full Text] [Related]
19. Viable cyanobacteria in the deep continental subsurface. Puente-Sánchez F; Arce-Rodríguez A; Oggerin M; García-Villadangos M; Moreno-Paz M; Blanco Y; Rodríguez N; Bird L; Lincoln SA; Tornos F; Prieto-Ballesteros O; Freeman KH; Pieper DH; Timmis KN; Amils R; Parro V Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10702-10707. PubMed ID: 30275328 [TBL] [Abstract][Full Text] [Related]
20. The paleobiological record of photosynthesis. William Schopf J Photosynth Res; 2011 Jan; 107(1):87-101. PubMed ID: 20607406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]