These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24152720)

  • 1. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes.
    Kinkel LL; Schlatter DC; Xiao K; Baines AD
    ISME J; 2014 Feb; 8(2):249-56. PubMed ID: 24152720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory and nutrient use phenotypes among coexisting Fusarium and Streptomyces populations suggest local coevolutionary interactions in soil.
    Essarioui A; LeBlanc N; Otto-Hanson L; Schlatter DC; Kistler HC; Kinkel LL
    Environ Microbiol; 2020 Mar; 22(3):976-985. PubMed ID: 31424591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and phenotypic traits of streptomycetes used to characterize antibiotic activities of field-collected microbes.
    Davelos AL; Xiao K; Flor JM; Kinkel LL
    Can J Microbiol; 2004 Feb; 50(2):79-89. PubMed ID: 15052309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil streptomyces.
    Vaz Jauri P; Bakker MG; Salomon CE; Kinkel LL
    PLoS One; 2013; 8(12):e81064. PubMed ID: 24339897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.
    Essarioui A; LeBlanc N; Kistler HC; Kinkel LL
    Microb Ecol; 2017 Jul; 74(1):157-167. PubMed ID: 28058470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coevolutionary framework for managing disease-suppressive soils.
    Kinkel LL; Bakker MG; Schlatter DC
    Annu Rev Phytopathol; 2011; 49():47-67. PubMed ID: 21639781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype among Streptomyces spp.
    Vaz Jauri P; Kinkel LL
    FEMS Microbiol Ecol; 2014 Oct; 90(1):264-75. PubMed ID: 25098381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of correspondence between genetic and phenotypic groups amongst soil-borne streptomycetes.
    Davelos Baines AL; Xiao K; Kinkel LL
    FEMS Microbiol Ecol; 2007 Mar; 59(3):564-75. PubMed ID: 17381515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil.
    Davelos AL; Kinkel LL; Samac DA
    Appl Environ Microbiol; 2004 Feb; 70(2):1051-8. PubMed ID: 14766588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the possible ecological roles of antimicrobials.
    Pishchany G; Kolter R
    Mol Microbiol; 2020 Mar; 113(3):580-587. PubMed ID: 31975454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition Sensing Changes Antibiotic Production in
    Westhoff S; Kloosterman AM; van Hoesel SFA; van Wezel GP; Rozen DE
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils.
    Schlatter DC; Song Z; Vaz-Jauri P; Kinkel LL
    PLoS One; 2019; 14(10):e0223779. PubMed ID: 31671139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Densities and inhibitory phenotypes among indigenous Streptomyces spp. vary across native and agricultural habitats.
    Otto-Hanson LK; Kinkel LL
    Microb Ecol; 2020 Apr; 79(3):694-705. PubMed ID: 31656973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces?
    Schlatter DC; Kinkel LL
    BMC Evol Biol; 2015 Sep; 15():186. PubMed ID: 26370703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces species.
    Avalos M; Garbeva P; Raaijmakers JM; van Wezel GP
    ISME J; 2020 Feb; 14(2):569-583. PubMed ID: 31700119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria.
    Raaijmakers JM; Mazzola M
    Annu Rev Phytopathol; 2012; 50():403-24. PubMed ID: 22681451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome.
    Hou Q; Kolodkin-Gal I
    FEMS Microbiol Ecol; 2020 Sep; 96(9):. PubMed ID: 32672816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of Sympatric and Allopatric Populations in Free-Living Terrestrial Bacteria.
    Chase AB; Arevalo P; Brodie EL; Polz MF; Karaoz U; Martiny JBH
    mBio; 2019 Oct; 10(5):. PubMed ID: 31662456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foliar bacteria and soil fertility mediate seedling performance: a new and cryptic dimension of niche differentiation.
    Griffin EA; Traw MB; Morin PJ; Pruitt JN; Wright SJ; Carson WP
    Ecology; 2016 Nov; 97(11):2998-3008. PubMed ID: 27870044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Socially mediated induction and suppression of antibiosis during bacterial coexistence.
    Abrudan MI; Smakman F; Grimbergen AJ; Westhoff S; Miller EL; van Wezel GP; Rozen DE
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):11054-9. PubMed ID: 26216986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.