These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 24153184)

  • 1. Crystal structure of the 14-subunit RNA polymerase I.
    Fernández-Tornero C; Moreno-Morcillo M; Rashid UJ; Taylor NM; Ruiz FM; Gruene T; Legrand P; Steuerwald U; Müller CW
    Nature; 2013 Oct; 502(7473):644-9. PubMed ID: 24153184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2.
    Tafur L; Sadian Y; Hanske J; Wetzel R; Weis F; Müller CW
    Elife; 2019 Mar; 8():. PubMed ID: 30913026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Structures of Transcribing RNA Polymerase I.
    Tafur L; Sadian Y; Hoffmann NA; Jakobi AJ; Wetzel R; Hagen WJH; Sachse C; Müller CW
    Mol Cell; 2016 Dec; 64(6):1135-1143. PubMed ID: 27867008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA polymerase I structure and transcription regulation.
    Engel C; Sainsbury S; Cheung AC; Kostrewa D; Cramer P
    Nature; 2013 Oct; 502(7473):650-5. PubMed ID: 24153182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage.
    Jennebach S; Herzog F; Aebersold R; Cramer P
    Nucleic Acids Res; 2012 Jul; 40(12):5591-601. PubMed ID: 22396529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of two modes of intrinsic RNA polymerase transcript cleavage.
    Ruan W; Lehmann E; Thomm M; Kostrewa D; Cramer P
    J Biol Chem; 2011 May; 286(21):18701-7. PubMed ID: 21454497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure.
    Merkl PE; Pilsl M; Fremter T; Schwank K; Engel C; Längst G; Milkereit P; Griesenbeck J; Tschochner H
    J Biol Chem; 2020 Apr; 295(15):4782-4795. PubMed ID: 32060094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of RNA polymerase III transcription initiation.
    Abascal-Palacios G; Ramsay EP; Beuron F; Morris E; Vannini A
    Nature; 2018 Jan; 553(7688):301-306. PubMed ID: 29345637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional architecture of RNA polymerase I.
    Kuhn CD; Geiger SR; Baumli S; Gartmann M; Gerber J; Jennebach S; Mielke T; Tschochner H; Beckmann R; Cramer P
    Cell; 2007 Dec; 131(7):1260-72. PubMed ID: 18160037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of RNA polymerase II backtracking, arrest and reactivation.
    Cheung AC; Cramer P
    Nature; 2011 Mar; 471(7337):249-53. PubMed ID: 21346759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model.
    Jasiak AJ; Armache KJ; Martens B; Jansen RP; Cramer P
    Mol Cell; 2006 Jul; 23(1):71-81. PubMed ID: 16818233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of the yeast RNA polymerase I-specific subunits.
    Bischler N; Brino L; Carles C; Riva M; Tschochner H; Mallouh V; Schultz P
    EMBO J; 2002 Aug; 21(15):4136-44. PubMed ID: 12145213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation.
    Scull CE; Lucius AL; Schneider DA
    Biophys J; 2021 May; 120(10):1883-1893. PubMed ID: 33737158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of transcribing mammalian RNA polymerase II.
    Bernecky C; Herzog F; Baumeister W; Plitzko JM; Cramer P
    Nature; 2016 Jan; 529(7587):551-4. PubMed ID: 26789250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine.
    Gadal O; Mariotte-Labarre S; Chedin S; Quemeneur E; Carles C; Sentenac A; Thuriaux P
    Mol Cell Biol; 1997 Apr; 17(4):1787-95. PubMed ID: 9121426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA polymerase I contains a TFIIF-related DNA-binding subcomplex.
    Geiger SR; Lorenzen K; Schreieck A; Hanecker P; Kostrewa D; Heck AJ; Cramer P
    Mol Cell; 2010 Aug; 39(4):583-94. PubMed ID: 20797630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex.
    Sainsbury S; Niesser J; Cramer P
    Nature; 2013 Jan; 493(7432):437-40. PubMed ID: 23151482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function analysis of RNA polymerases I and III.
    Werner M; Thuriaux P; Soutourina J
    Curr Opin Struct Biol; 2009 Dec; 19(6):740-5. PubMed ID: 19896367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of backtrack recovery by RNA polymerases I and II.
    Lisica A; Engel C; Jahnel M; Roldán É; Galburt EA; Cramer P; Grill SW
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2946-51. PubMed ID: 26929337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternative RNA polymerase I structure reveals a dimer hinge.
    Kostrewa D; Kuhn CD; Engel C; Cramer P
    Acta Crystallogr D Biol Crystallogr; 2015 Sep; 71(Pt 9):1850-5. PubMed ID: 26327374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.