BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24153399)

  • 1. Stem cell factor improves lung recovery in rats following neonatal hyperoxia-induced lung injury.
    Miranda LF; Rodrigues CO; Ramachandran S; Torres E; Huang J; Klim J; Hehre D; McNiece I; Hare JM; Suguihara CY; Young KC
    Pediatr Res; 2013 Dec; 74(6):682-8. PubMed ID: 24153399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone marrow-derived c-kit+ cells attenuate neonatal hyperoxia-induced lung injury.
    Ramachandran S; Suguihara C; Drummond S; Chatzistergos K; Klim J; Torres E; Huang J; Hehre D; Rodrigues CO; McNiece IK; Hare JM; Young KC
    Cell Transplant; 2015; 24(1):85-95. PubMed ID: 23759597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury.
    Sammour I; Somashekar S; Huang J; Batlahally S; Breton M; Valasaki K; Khan A; Wu S; Young KC
    PLoS One; 2016; 11(10):e0164269. PubMed ID: 27711256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term reparative effects of mesenchymal stem cell therapy following neonatal hyperoxia-induced lung injury.
    Sutsko RP; Young KC; Ribeiro A; Torres E; Rodriguez M; Hehre D; Devia C; McNiece I; Suguihara C
    Pediatr Res; 2013 Jan; 73(1):46-53. PubMed ID: 23138401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-tracheal administration of a naked plasmid expressing stromal derived factor-1 improves lung structure in rodents with experimental bronchopulmonary dysplasia.
    Guerra K; Bryan C; Dapaah-Siakwan F; Sammour I; Drummond S; Zambrano R; Chen P; Huang J; Sharma M; Shrager S; Benny M; Wu S; Young KC
    Respir Res; 2019 Nov; 20(1):255. PubMed ID: 31718614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats.
    Kunig AM; Balasubramaniam V; Markham NE; Morgan D; Montgomery G; Grover TR; Abman SH
    Am J Physiol Lung Cell Mol Physiol; 2005 Oct; 289(4):L529-35. PubMed ID: 15908474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia.
    Kunig AM; Balasubramaniam V; Markham NE; Seedorf G; Gien J; Abman SH
    Am J Physiol Lung Cell Mol Physiol; 2006 Nov; 291(5):L1068-78. PubMed ID: 16829629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury.
    de Visser YP; Walther FJ; Laghmani el H; Boersma H; van der Laarse A; Wagenaar GT
    Respir Res; 2009 Apr; 10(1):30. PubMed ID: 19402887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apelin attenuates hyperoxic lung and heart injury in neonatal rats.
    Visser YP; Walther FJ; Laghmani el H; Laarse Av; Wagenaar GT
    Am J Respir Crit Care Med; 2010 Nov; 182(10):1239-50. PubMed ID: 20622042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CXCR4 blockade attenuates hyperoxia-induced lung injury in neonatal rats.
    Drummond S; Ramachandran S; Torres E; Huang J; Hehre D; Suguihara C; Young KC
    Neonatology; 2015; 107(4):304-11. PubMed ID: 25825119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury.
    Ladha F; Bonnet S; Eaton F; Hashimoto K; Korbutt G; Thébaud B
    Am J Respir Crit Care Med; 2005 Sep; 172(6):750-6. PubMed ID: 15947285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphodiesterase 4 inhibition attenuates persistent heart and lung injury by neonatal hyperoxia in rats.
    de Visser YP; Walther FJ; Laghmani el H; Steendijk P; Middeldorp M; van der Laarse A; Wagenaar GT
    Am J Physiol Lung Cell Mol Physiol; 2012 Jan; 302(1):L56-67. PubMed ID: 21949154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caffeine is associated with improved alveolarization and angiogenesis in male mice following hyperoxia induced lung injury.
    Dumpa V; Nielsen L; Wang H; Kumar VHS
    BMC Pulm Med; 2019 Jul; 19(1):138. PubMed ID: 31362742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure.
    Goss KN; Cucci AR; Fisher AJ; Albrecht M; Frump A; Tursunova R; Gao Y; Brown MB; Petrache I; Tepper RS; Ahlfeld SK; Lahm T
    Am J Physiol Lung Cell Mol Physiol; 2015 Apr; 308(8):L797-806. PubMed ID: 25659904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant CCN1 prevents hyperoxia-induced lung injury in neonatal rats.
    Vaidya R; Zambrano R; Hummler JK; Luo S; Duncan MR; Young K; Lau LF; Wu S
    Pediatr Res; 2017 Nov; 82(5):863-871. PubMed ID: 28700567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous hydrogen sulfide (H2S) protects alveolar growth in experimental O2-induced neonatal lung injury.
    Vadivel A; Alphonse RS; Ionescu L; Machado DS; O'Reilly M; Eaton F; Haromy A; Michelakis ED; Thébaud B
    PLoS One; 2014; 9(3):e90965. PubMed ID: 24603989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambrisentan reduces pulmonary arterial hypertension but does not stimulate alveolar and vascular development in neonatal rats with hyperoxic lung injury.
    Wagenaar GT; Laghmani el H; de Visser YP; Sengers RM; Steendijk P; Baelde HJ; Walther FJ
    Am J Physiol Lung Cell Mol Physiol; 2013 Feb; 304(4):L264-75. PubMed ID: 23292811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riociguat prevents hyperoxia-induced lung injury and pulmonary hypertension in neonatal rats without effects on long bone growth.
    Donda K; Zambrano R; Moon Y; Percival J; Vaidya R; Dapaah-Siakwan F; Luo S; Duncan MR; Bao Y; Wang L; Qin L; Benny M; Young K; Wu S
    PLoS One; 2018; 13(7):e0199927. PubMed ID: 29990355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of
    Zhang Y; Dong X; Lingappan K
    Oxid Med Cell Longev; 2019; 2019():8327486. PubMed ID: 31772711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia.
    Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.