These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 24154600)
1. Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats. Bachmann LC; Matis A; Lindau NT; Felder P; Gullo M; Schwab ME Sci Transl Med; 2013 Oct; 5(208):208ra146. PubMed ID: 24154600 [TBL] [Abstract][Full Text] [Related]
2. Deep brain stimulation for locomotor recovery following spinal cord injury. Richardson M Neurosurgery; 2014 Feb; 74(2):N18-9. PubMed ID: 24435148 [No Abstract] [Full Text] [Related]
3. Electrical stimulation of the cuneiform nucleus enhances the effects of rehabilitative training on locomotor recovery after incomplete spinal cord injury. Scheuber MI; Guidolin C; Martins S; Sartori AM; Hofer AS; Schwab ME Front Neurosci; 2024; 18():1352742. PubMed ID: 38595973 [TBL] [Abstract][Full Text] [Related]
4. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats. You SW; Chen BY; Liu HL; Lang B; Xia JL; Jiao XY; Ju G Restor Neurol Neurosci; 2003; 21(1-2):39-45. PubMed ID: 12808201 [TBL] [Abstract][Full Text] [Related]
5. Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury. Bonizzato M; James ND; Pidpruzhnykova G; Pavlova N; Shkorbatova P; Baud L; Martinez-Gonzalez C; Squair JW; DiGiovanna J; Barraud Q; Micera S; Courtine G Nat Commun; 2021 Mar; 12(1):1925. PubMed ID: 33771986 [TBL] [Abstract][Full Text] [Related]
6. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury. Zörner B; Bachmann LC; Filli L; Kapitza S; Gullo M; Bolliger M; Starkey ML; Röthlisberger M; Gonzenbach RR; Schwab ME Brain; 2014 Jun; 137(Pt 6):1716-32. PubMed ID: 24736305 [TBL] [Abstract][Full Text] [Related]
7. The Gigantocellular Reticular Nucleus Plays a Significant Role in Locomotor Recovery after Incomplete Spinal Cord Injury. Engmann AK; Bizzozzero F; Schneider MP; Pfyffer D; Imobersteg S; Schneider R; Hofer AS; Wieckhorst M; Schwab ME J Neurosci; 2020 Oct; 40(43):8292-8305. PubMed ID: 32978289 [TBL] [Abstract][Full Text] [Related]
8. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion. Noga BR; Sanchez FJ; Villamil LM; O'Toole C; Kasicki S; Olszewski M; Cabaj AM; Majczyński H; Sławińska U; Jordan LM Front Neural Circuits; 2017; 11():34. PubMed ID: 28579945 [TBL] [Abstract][Full Text] [Related]
10. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion. Sławińska U; Miazga K; Cabaj AM; Leszczyńska AN; Majczyński H; Nagy JI; Jordan LM Exp Neurol; 2013 Sep; 247():572-81. PubMed ID: 23481546 [TBL] [Abstract][Full Text] [Related]
11. Initiation of locomotion in lampreys. Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380 [TBL] [Abstract][Full Text] [Related]
12. The Louisville Swim Scale: a novel assessment of hindlimb function following spinal cord injury in adult rats. Smith RR; Burke DA; Baldini AD; Shum-Siu A; Baltzley R; Bunger M; Magnuson DS J Neurotrauma; 2006 Nov; 23(11):1654-70. PubMed ID: 17115911 [TBL] [Abstract][Full Text] [Related]
13. Deep brain stimulation for locomotion in incomplete human spinal cord injury (DBS-SCI): protocol of a prospective one-armed multi-centre study. Stieglitz LH; Hofer AS; Bolliger M; Oertel MF; Filli L; Willi R; Cathomen A; Meyer C; Schubert M; Hubli M; Kessler TM; Baumann CR; Imbach L; Krüsi I; Prusse A; Schwab ME; Regli L; Curt A BMJ Open; 2021 Sep; 11(9):e047670. PubMed ID: 34593490 [TBL] [Abstract][Full Text] [Related]
14. Task-specificity vs. ceiling effect: step-training in shallow water after spinal cord injury. Kuerzi J; Brown EH; Shum-Siu A; Siu A; Burke D; Morehouse J; Smith RR; Magnuson DS Exp Neurol; 2010 Jul; 224(1):178-87. PubMed ID: 20302862 [TBL] [Abstract][Full Text] [Related]
15. Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry. Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S J Neurophysiol; 2011 Oct; 106(4):1969-84. PubMed ID: 21775717 [TBL] [Abstract][Full Text] [Related]
16. Restoring voluntary control of locomotion after paralyzing spinal cord injury. van den Brand R; Heutschi J; Barraud Q; DiGiovanna J; Bartholdi K; Huerlimann M; Friedli L; Vollenweider I; Moraud EM; Duis S; Dominici N; Micera S; Musienko P; Courtine G Science; 2012 Jun; 336(6085):1182-5. PubMed ID: 22654062 [TBL] [Abstract][Full Text] [Related]
17. Effect of stimulating the lumbar skin caudal to a complete spinal cord injury on hindlimb locomotion. Hurteau MF; Thibaudier Y; Dambreville C; Desaulniers C; Frigon A J Neurophysiol; 2015 Jan; 113(2):669-76. PubMed ID: 25339715 [TBL] [Abstract][Full Text] [Related]
18. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. Filli L; Zörner B; Weinmann O; Schwab ME Brain; 2011 Aug; 134(Pt 8):2261-73. PubMed ID: 21752788 [TBL] [Abstract][Full Text] [Related]
19. Recovery of locomotor function after treadmill training of incomplete spinal cord injured rats. Thota A; Carlson S; Jung R Biomed Sci Instrum; 2001; 37():63-7. PubMed ID: 11347446 [TBL] [Abstract][Full Text] [Related]