These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24155008)

  • 1. Modulation of transcallosal inhibition by bilateral activation of agonist and antagonist proximal arm muscles.
    Perez MA; Butler JE; Taylor JL
    J Neurophysiol; 2014 Jan; 111(2):405-14. PubMed ID: 24155008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans.
    Soteropoulos DS; Perez MA
    J Neurophysiol; 2011 Apr; 105(4):1594-602. PubMed ID: 21273315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crossed corticospinal facilitation between arm and trunk muscles in humans.
    Chiou SY; Strutton PH; Perez MA
    J Neurophysiol; 2018 Nov; 120(5):2595-2602. PubMed ID: 29847230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective activation of ipsilateral motor pathways in intact humans.
    Tazoe T; Perez MA
    J Neurosci; 2014 Oct; 34(42):13924-34. PubMed ID: 25319689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles.
    Zijdewind I; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2006 Nov; 175(3):526-35. PubMed ID: 16924489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interhemispheric connectivity during bimanual isometric force generation.
    Long J; Tazoe T; Soteropoulos DS; Perez MA
    J Neurophysiol; 2016 Mar; 115(3):1196-207. PubMed ID: 26538610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interhemispheric interactions between trunk muscle representations of the primary motor cortex.
    Jean-Charles L; Nepveu JF; Deffeyes JE; Elgbeili G; Dancause N; Barthélemy D
    J Neurophysiol; 2017 Sep; 118(3):1488-1500. PubMed ID: 28615339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of corticospinal output in agonist and antagonist proximal arm muscles during motor preparation.
    Neige C; Massé-Alarie H; Gagné M; Bouyer LJ; Mercier C
    PLoS One; 2017; 12(11):e0188801. PubMed ID: 29186189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticospinal and transcallosal modulation of unilateral and bilateral contractions of lower limbs.
    Škarabot J; Alfonso RP; Cronin N; Bon J; Strojnik V; Avela J
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2197-2214. PubMed ID: 27628532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of arm flexor muscles to magnetic and electrical brain stimulation during shortening and lengthening tasks in man.
    Abbruzzese G; Morena M; Spadavecchia L; Schieppati M
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):499-507. PubMed ID: 7738841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW; Cadigan EWJ; Stefanelli L; Button DC
    J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia.
    Sangari S; Perez MA
    J Neurosci; 2020 Nov; 40(46):8831-8841. PubMed ID: 32883710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanomyographic response to transcranial magnetic stimulation from biceps brachii and during transcutaneous electrical nerve stimulation on extensor carpi radialis.
    Reza MF; Ikoma K; Chuma T; Mano Y
    J Neurosci Methods; 2005 Dec; 149(2):164-71. PubMed ID: 16026847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men.
    Temesi J; Vernillo G; Martin M; Krüger RL; McNeil CJ; Millet GY
    Neuroscience; 2019 Dec; 422():88-98. PubMed ID: 31682821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effort-induced mirror movements. A study of transcallosal inhibition in humans.
    Arányi Z; Rösler KM
    Exp Brain Res; 2002 Jul; 145(1):76-82. PubMed ID: 12070747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interhemispheric inhibition is different during arm cycling than a position- and intensity-matched tonic contraction.
    Compton CT; Lockyer EJ; Benson RJ; Power KE
    Exp Brain Res; 2022 Sep; 240(9):2425-2434. PubMed ID: 35852566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The orderly recruitment of motor units may be modified when a muscle is acting as an antagonist.
    Magnuson JR; Dalton BH; McNeil CJ
    J Appl Physiol (1985); 2023 Sep; 135(3):519-526. PubMed ID: 37439237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle.
    Aboodarda SJ; Šambaher N; Millet GY; Behm DG
    Neuroscience; 2017 Jan; 340():477-486. PubMed ID: 27826108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.