These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2415566)

  • 1. Factors influencing the properties of voltammetric carbon fibre electrodes: the importance of the pH of the medium used for the electrical treatment and of the resin coating of the fibres.
    Hahn Z; Cespuglio R; Faradji H; Jouvet M
    J Biochem Biophys Methods; 1985 Oct; 11(4-5):265-75. PubMed ID: 2415566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-differential voltammetry with carbon fiber electrodes for in vivo determination of monoamine metabolites and ascorbic acid in rat corpus striatum.
    Cao YP; Liu GQ; Jia XM; Peng TZ
    Zhongguo Yao Li Xue Bao; 1992 May; 13(3):259-62. PubMed ID: 1279939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon fibre micro-electrode and in vitro or in brain slices voltammetric measurement of ascorbate, catechol and indole oxidation signals: influence of temperature and physiological media.
    Crespi F
    Biosens Bioelectron; 1996; 11(8):743-9. PubMed ID: 8639282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo voltammetric recording with nafion-coated carbon paste electrodes: additional evidence that ascorbic acid release is monitored.
    Mueller K
    Pharmacol Biochem Behav; 1986 Aug; 25(2):325-8. PubMed ID: 3763657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interference by DOPAC and ascorbate during attempts to measure drug-induced changes in neostriatal dopamine with Nafion-coated, carbon-fiber electrodes.
    Wiedemann DJ; Basse-Tomusk A; Wilson RL; Rebec GV; Wightman RM
    J Neurosci Methods; 1990 Oct; 35(1):9-18. PubMed ID: 2148961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo characterization of the properties of a multifiber carbon electrode allowing long-term electrochemical detection of dopamine in freely moving animals.
    el Ganouni S; Forni C; Nieoullon A
    Brain Res; 1987 Feb; 404(1-2):239-56. PubMed ID: 3494483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting in vivo electrochemistry: electrode-tissue interaction and the ascorbate amplification effect.
    Echizen H; Freed CR
    Life Sci; 1986 Jul; 39(1):77-89. PubMed ID: 2425210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local depletion of monoamines induced with in vivo voltammetry in the cat brain.
    Gratzl M; Tarcali J; Pungor E; Juhász G
    Neuroscience; 1991; 41(1):287-93. PubMed ID: 1711652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved differential pulse voltammetry technique allows the simultaneous analysis of dopaminergic and serotonergic activities in vivo with a single carbon-fibre electrode.
    Crespi F; Paret J; Keane PE; Morre M
    Neurosci Lett; 1984 Nov; 52(1-2):159-64. PubMed ID: 6084835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential pulse voltammetry: simultaneous in vivo measurement of ascorbic acid, catechols and 5-hydroxyindoles in the rat striatum.
    Crespi F; Sharp T; Maidment NT; Marsden CA
    Brain Res; 1984 Nov; 322(1):135-8. PubMed ID: 6083820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltammetry in the striatum of chronic freely moving rats: detection of catechols and ascorbic acid.
    Gonon F; Buda M; Cespuglio R; Jouvet M; Pujol JF
    Brain Res; 1981 Oct; 223(1):69-80. PubMed ID: 7284811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon paste electrode modified with copper (II) phosphate immobilized in a polyester resin for voltammetric determination of L-ascorbic acid in pharmaceutical formulations.
    Teixeira MF; Ramos LA; Fatibello-Filho O; Cavalheiro ET
    Anal Bioanal Chem; 2003 May; 376(2):214-9. PubMed ID: 12677341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro comparison of the selectivity of electrodes for in vivo electrochemistry.
    Kovach PM; Ewing AG; Wilson RL; Wightman RM
    J Neurosci Methods; 1984 Mar; 10(3):215-27. PubMed ID: 6738110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon fibre micro-electrodes for concomitant in vivo electrophysiological and voltammetric measurements: no reciprocal influences.
    Crespi F; England T; Ratti E; Trist DG
    Neurosci Lett; 1995 Mar; 188(1):33-6. PubMed ID: 7540274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid.
    Rocha LS; Carapuça HM
    Bioelectrochemistry; 2006 Oct; 69(2):258-66. PubMed ID: 16713377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid.
    Wang Z; Liu J; Liang Q; Wang Y; Luo G
    Analyst; 2002 May; 127(5):653-8. PubMed ID: 12081044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid.
    Zhang L; Lin X
    Anal Bioanal Chem; 2005 Aug; 382(7):1669-77. PubMed ID: 15997381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical synthesis of a polyaniline network on a poly(o-aminophenol) modified glassy carbon electrode and its use for the simultaneous determination of ascorbic acid and uric acid.
    Zhang L; Wang LL
    Anal Sci; 2012; 28(10):1001-7. PubMed ID: 23059997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain.
    Zhang M; Liu K; Xiang L; Lin Y; Su L; Mao L
    Anal Chem; 2007 Sep; 79(17):6559-65. PubMed ID: 17676820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic acid using 4-(dimethylamino)pyridine capped gold nanoparticles immobilized on gold electrode.
    Raj MA; Revin SB; John SA
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):353-60. PubMed ID: 21683558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.