These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 24155694)

  • 21. Antidromic activation reveals tonotopically organized projections from primary auditory cortex to the central nucleus of the inferior colliculus in guinea pig.
    Lim HH; Anderson DJ
    J Neurophysiol; 2007 Feb; 97(2):1413-27. PubMed ID: 17151230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal properties of chronic cochlear electrical stimulation determine temporal resolution of neurons in cat inferior colliculus.
    Vollmer M; Snyder RL; Leake PA; Beitel RE; Moore CM; Rebscher SJ
    J Neurophysiol; 1999 Dec; 82(6):2883-902. PubMed ID: 10601427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical differences in the encoding of amplitude modulation in the subcortical auditory system of awake nonhuman primates.
    Mackey CA; Hauser S; Schoenhaut AM; Temghare N; Ramachandran R
    J Neurophysiol; 2024 Sep; 132(3):1098-1114. PubMed ID: 39140590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory processing of spectral cues for sound localization in the inferior colliculus.
    Davis KA; Ramachandran R; May BJ
    J Assoc Res Otolaryngol; 2003 Jun; 4(2):148-63. PubMed ID: 12943370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auditory midbrain implant: a review.
    Lim HH; Lenarz M; Lenarz T
    Trends Amplif; 2009 Sep; 13(3):149-80. PubMed ID: 19762428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.
    Recio-Spinoso A; Joris PX
    J Neurophysiol; 2014 Feb; 111(4):817-35. PubMed ID: 24285864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity.
    Middlebrooks JC; Snyder RL
    J Neurosci; 2010 Feb; 30(5):1937-46. PubMed ID: 20130202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate.
    McCreery D; Han M; Pikov V; Yadav K; Pannu S
    J Neural Eng; 2013 Oct; 10(5):056010. PubMed ID: 23928683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coding of communication calls in the subcortical and cortical structures of the auditory system.
    Suta D; Popelár J; Syka J
    Physiol Res; 2008; 57 Suppl 3():S149-S159. PubMed ID: 18481905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency response areas of neurons in the mouse inferior colliculus. III. Time-domain responses: Constancy, dynamics, and precision in relation to spectral resolution, and perception in the time domain.
    Egorova MA; Akimov AG; Khorunzhii GD; Ehret G
    PLoS One; 2020; 15(10):e0240853. PubMed ID: 33104718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural coding of the sound envelope is changed in the inferior colliculus immediately following acoustic trauma.
    Heeringa AN; van Dijk P
    Eur J Neurosci; 2019 May; 49(10):1220-1232. PubMed ID: 30549334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brief and short-term corticofugal modulation of acoustic signal processing in the bat midbrain.
    Jen PH; Zhou X; Zhang J; Chen QC; Sun X
    Hear Res; 2002 Jun; 168(1-2):196-207. PubMed ID: 12117521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Encoding of amplitude-modulated tones by neurons of the inferior colliculus of the kitten.
    Brugge JF; Blatchley B; Kudoh M
    Brain Res; 1993 Jul; 615(2):199-217. PubMed ID: 8364731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Midbrain-Level Neural Correlates of Behavioral Tone-in-Noise Detection: Dependence on Energy and Envelope Cues.
    Wang Y; Abrams KS; Carney LH; Henry KS
    J Neurosci; 2021 Aug; 41(34):7206-7223. PubMed ID: 34266898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporating models of subcortical processing improves the ability to predict EEG responses to natural speech.
    Lindboom E; Nidiffer A; Carney LH; Lalor EC
    Hear Res; 2023 Jun; 433():108767. PubMed ID: 37060895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex.
    Vollmer M; Beitel RE; Schreiner CE; Leake PA
    J Neurophysiol; 2017 Jan; 117(1):47-64. PubMed ID: 27733594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Receptive field dimensionality increases from the auditory midbrain to cortex.
    Atencio CA; Sharpee TO; Schreiner CE
    J Neurophysiol; 2012 May; 107(10):2594-603. PubMed ID: 22323634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system.
    Dicke U; Ewert SD; Dau T; Kollmeier B
    J Acoust Soc Am; 2007 Jan; 121(1):310-26. PubMed ID: 17297786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain.
    Macova I; Pysanenko K; Chumak T; Dvorakova M; Bohuslavova R; Syka J; Fritzsch B; Pavlinkova G
    J Neurosci; 2019 Feb; 39(6):984-1004. PubMed ID: 30541910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.