These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24155893)

  • 1. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems.
    Suárez C; Espariz M; Blancato VS; Magni C
    PLoS One; 2013; 8(10):e76170. PubMed ID: 24155893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites.
    Suárez CA; Blancato VS; Poncet S; Deutscher J; Magni C
    BMC Microbiol; 2011 Oct; 11():227. PubMed ID: 21989394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.
    Del Rio B; Linares D; Ladero V; Redruello B; Fernandez M; Martin MC; Alvarez MA
    Int J Food Microbiol; 2016 Nov; 236():83-9. PubMed ID: 27454783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The gene cluster for agmatine catabolism of Enterococcus faecalis: study of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reaction.
    Llácer JL; Polo LM; Tavárez S; Alarcón B; Hilario R; Rubio V
    J Bacteriol; 2007 Feb; 189(4):1254-65. PubMed ID: 17028272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1.
    Nakada Y; Jiang Y; Nishijyo T; Itoh Y; Lu CD
    J Bacteriol; 2001 Nov; 183(22):6517-24. PubMed ID: 11673419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.
    Linares DM; Perez M; Ladero V; Del Rio B; Redruello B; Martin MC; Fernandez M; Alvarez MA
    Microb Cell Fact; 2014 Dec; 13():169. PubMed ID: 25471381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration.
    Linares DM; Del Rio B; Redruello B; Ladero V; Martin MC; de Jong A; Kuipers OP; Fernandez M; Alvarez MA
    Appl Environ Microbiol; 2015 Sep; 81(18):6145-57. PubMed ID: 26116671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enterococcus faecalis Maltodextrin Gene Regulation by Combined Action of Maltose Gene Regulator MalR and Pleiotropic Regulator CcpA.
    Grand M; Riboulet-Bisson E; Deutscher J; Hartke A; Sauvageot N
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses.
    Opsata M; Nes IF; Holo H
    BMC Microbiol; 2010 Aug; 10():224. PubMed ID: 20738841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon.
    Kaufman GE; Yother J
    J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enterococcus faecalis MalR acts as a repressor of the maltose operons and additionally mediates their catabolite repression via direct interaction with seryl-phosphorylated-HPr.
    Grand M; Blancato VS; Espariz M; Deutscher J; Pikis A; Hartke A; Magni C; Sauvageot N
    Mol Microbiol; 2020 Feb; 113(2):464-477. PubMed ID: 31755602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine.
    Del Rio B; Redruello B; Martin MC; Fernandez M; de Jong A; Kuipers OP; Ladero V; Alvarez MA
    Genom Data; 2016 Mar; 7():112-4. PubMed ID: 26981381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666.
    Del Rio B; Linares DM; Redruello B; Martin MC; Fernandez M; de Jong A; Kuipers OP; Ladero V; Alvarez MA
    Genom Data; 2015 Dec; 6():228-30. PubMed ID: 26697381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.
    Linares DM; del Río B; Ladero V; Redruello B; Martín MC; Fernández M; Alvarez MA
    Int J Food Microbiol; 2013 Jul; 165(1):43-50. PubMed ID: 23688550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AguR is required for induction of the Streptococcus mutans agmatine deiminase system by low pH and agmatine.
    Liu Y; Zeng L; Burne RA
    Appl Environ Microbiol; 2009 May; 75(9):2629-37. PubMed ID: 19270124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a mannose utilization system in Bacillus subtilis.
    Sun T; Altenbuchner J
    J Bacteriol; 2010 Apr; 192(8):2128-39. PubMed ID: 20139185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis.
    Barcelona-Andrés B; Marina A; Rubio V
    J Bacteriol; 2002 Nov; 184(22):6289-300. PubMed ID: 12399499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-tuned transcriptional regulation of malate operons in Enterococcus faecalis.
    Mortera P; Espariz M; Suárez C; Repizo G; Deutscher J; Alarcón S; Blancato V; Magni C
    Appl Environ Microbiol; 2012 Mar; 78(6):1936-45. PubMed ID: 22247139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in
    Perez M; Ladero V; Del Rio B; Redruello B; de Jong A; Kuipers O; Kok J; Martin MC; Fernandez M; Alvarez MA
    Front Microbiol; 2017; 8():2107. PubMed ID: 29163401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.