BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 24156355)

  • 21. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy.
    Mortezaee K; Goradel NH; Amini P; Shabeeb D; Musa AE; Najafi M; Farhood B
    Curr Mol Pharmacol; 2019; 12(1):50-60. PubMed ID: 30318012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nox proteins in signal transduction.
    Brown DI; Griendling KK
    Free Radic Biol Med; 2009 Nov; 47(9):1239-53. PubMed ID: 19628035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy.
    Weyemi U; Redon CE; Parekh PR; Dupuy C; Bonner WM
    Anticancer Agents Med Chem; 2013 Mar; 13(3):502-14. PubMed ID: 22931418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives.
    Dang PM; Rolas L; El-Benna J
    Antioxid Redox Signal; 2020 Aug; 33(5):354-373. PubMed ID: 31968991
    [No Abstract]   [Full Text] [Related]  

  • 25. Redox regulation of Nox proteins.
    Pendyala S; Natarajan V
    Respir Physiol Neurobiol; 2010 Dec; 174(3):265-71. PubMed ID: 20883826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuberin regulates reactive oxygen species in renal proximal cells, kidney from rodents, and kidney from patients with tuberous sclerosis complex.
    Habib SL; Abboud HE
    Cancer Sci; 2016 Aug; 107(8):1092-100. PubMed ID: 27278252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BJ-1108, a 6-Amino-2,4,5-Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX Pathway.
    Banskota S; Gautam J; Regmi SC; Gurung P; Park MH; Kim SJ; Nam TG; Jeong BS; Kim JA
    PLoS One; 2016; 11(1):e0148133. PubMed ID: 26824764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences.
    Brandes RP; Weissmann N; Schröder K
    Antioxid Redox Signal; 2014 Feb; 20(6):887-98. PubMed ID: 23682993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of NADPH oxidases in liver fibrosis.
    Paik YH; Kim J; Aoyama T; De Minicis S; Bataller R; Brenner DA
    Antioxid Redox Signal; 2014 Jun; 20(17):2854-72. PubMed ID: 24040957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease.
    Touyz RM; Anagnostopoulou A; Camargo LL; Rios FJ; Montezano AC
    Antioxid Redox Signal; 2019 Mar; 30(7):1027-1040. PubMed ID: 30334629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NADPH oxidases and ROS signaling in the gastrointestinal tract.
    Aviello G; Knaus UG
    Mucosal Immunol; 2018 Jul; 11(4):1011-1023. PubMed ID: 29743611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production.
    Dikalov SI; Dikalova AE; Bikineyeva AT; Schmidt HH; Harrison DG; Griendling KK
    Free Radic Biol Med; 2008 Nov; 45(9):1340-51. PubMed ID: 18760347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ROS-NOX connection in cancer and angiogenesis.
    Blanchetot C; Boonstra J
    Crit Rev Eukaryot Gene Expr; 2008; 18(1):35-45. PubMed ID: 18197784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and mechanisms of ROS generation by NADPH oxidases.
    Magnani F; Mattevi A
    Curr Opin Struct Biol; 2019 Dec; 59():91-97. PubMed ID: 31051297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution and diversity of ROS-generating enzymes across the animal kingdom, with a focus on sponges (Porifera).
    Hewitt OH; Degnan SM
    BMC Biol; 2022 Sep; 20(1):212. PubMed ID: 36175868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms.
    Manea SA; Constantin A; Manda G; Sasson S; Manea A
    Redox Biol; 2015 Aug; 5():358-366. PubMed ID: 26133261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling.
    Hole PS; Zabkiewicz J; Munje C; Newton Z; Pearn L; White P; Marquez N; Hills RK; Burnett AK; Tonks A; Darley RL
    Blood; 2013 Nov; 122(19):3322-30. PubMed ID: 24089327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox Imbalance in Idiopathic Pulmonary Fibrosis: A Role for Oxidant Cross-Talk Between NADPH Oxidase Enzymes and Mitochondria.
    Veith C; Boots AW; Idris M; van Schooten FJ; van der Vliet A
    Antioxid Redox Signal; 2019 Nov; 31(14):1092-1115. PubMed ID: 30793932
    [No Abstract]   [Full Text] [Related]  

  • 39. Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells.
    Hole PS; Pearn L; Tonks AJ; James PE; Burnett AK; Darley RL; Tonks A
    Blood; 2010 Feb; 115(6):1238-46. PubMed ID: 20007804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting NADPH oxidases for the treatment of cancer and inflammation.
    Bonner MY; Arbiser JL
    Cell Mol Life Sci; 2012 Jul; 69(14):2435-42. PubMed ID: 22581366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.