These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24156405)

  • 1. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Comput Methods Biomech Biomed Engin; 2015; 18(7):749-59. PubMed ID: 24156405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational reverse shoulder prosthesis model: Experimental data and verification.
    Martins A; Quental C; Folgado J; Ambrósio J; Monteiro J; Sarmento M
    J Biomech; 2015 Sep; 48(12):3242-51. PubMed ID: 26206550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multibody system of the upper limb including a reverse shoulder prosthesis.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    J Biomech Eng; 2013 Nov; 135(11):111005. PubMed ID: 24008920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces.
    Engelhardt C; Malfroy Camine V; Ingram D; Müllhaupt P; Farron A; Pioletti D; Terrier A
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1272-9. PubMed ID: 24697312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new shoulder model with a biologically inspired glenohumeral joint.
    Quental C; Folgado J; Ambrósio J; Monteiro J
    Med Eng Phys; 2016 Sep; 38(9):969-77. PubMed ID: 27381499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction.
    Yanagawa T; Goodwin CJ; Shelburne KB; Giphart JE; Torry MR; Pandy MG
    J Biomech Eng; 2008 Apr; 130(2):021024. PubMed ID: 18412511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shoulder muscle forces during driving: Sudden steering can load the rotator cuff beyond its repair limit.
    Pandis P; Prinold JA; Bull AM
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):839-46. PubMed ID: 26139549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sensitivity of shoulder muscle and joint force predictions to changes in joint kinematics: A Monte-Carlo analysis.
    Wu W; Lee PVS; Ackland DC
    Gait Posture; 2017 May; 54():87-92. PubMed ID: 28279851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function.
    Wu W; Lee PVS; Bryant AL; Galea M; Ackland DC
    J Biomech; 2016 Nov; 49(15):3626-3634. PubMed ID: 28327299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle co-contraction in an upper limb musculoskeletal model: EMG-assisted vs. standard load-sharing.
    Sarshari E; Mancuso M; Terrier A; Farron A; Mullhaupt P; Pioletti D
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):137-150. PubMed ID: 33945354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static optimization underestimates antagonist muscle activity at the glenohumeral joint: A musculoskeletal modeling study.
    Kian A; Pizzolato C; Halaki M; Ginn K; Lloyd D; Reed D; Ackland D
    J Biomech; 2019 Dec; 97():109348. PubMed ID: 31668905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoulder muscle function depends on elbow joint position: an illustration of dynamic coupling in the upper limb.
    Yu J; Ackland DC; Pandy MG
    J Biomech; 2011 Jul; 44(10):1859-68. PubMed ID: 21640353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vitro identification of shoulder joint and muscle dynamics based on motion capture and musculoskeletal computation.
    Murai A; Kawano Y; Ayusawa K; Tada M; Matsumura N; Nagura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6050-6053. PubMed ID: 28269632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Shoulder Kinematic Estimate on Joint and Muscle Mechanics Predicted by Musculoskeletal Model.
    Blache Y; Begon M
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):715-722. PubMed ID: 28641241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromyographic activity in the shoulder musculature during resistance training exercises of the ipsilateral upper limb while wearing a shoulder orthosis.
    Alenabi T; Jackson M; Tétreault P; Begon M
    J Shoulder Elbow Surg; 2014 Jun; 23(6):e140-8. PubMed ID: 24382333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a model for force predictions in the human shoulder.
    Karlsson D; Peterson B
    J Biomech; 1992 Feb; 25(2):189-99. PubMed ID: 1733994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoiding high-risk rotator cuff loading: Muscle force during three pull-up techniques.
    Urbanczyk CA; Prinold JAI; Reilly P; Bull AMJ
    Scand J Med Sci Sports; 2020 Nov; 30(11):2205-2214. PubMed ID: 32715526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shoulder strengthening exercises adapted to specific shoulder pathologies can be selected using new simulation techniques: a pilot study.
    Charbonnier C; Lädermann A; Kevelham B; Chagué S; Hoffmeyer P; Holzer N
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):321-330. PubMed ID: 28913728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational sensitivity analysis to identify muscles that can mechanically contribute to shoulder deformity following brachial plexus birth palsy.
    Crouch DL; Plate JF; Li Z; Saul KR
    J Hand Surg Am; 2014 Feb; 39(2):303-11. PubMed ID: 24342260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.