BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24156770)

  • 21. [Type III secretion system in Se9R can recognize and secret harpin in Erwinia amylovora].
    Wei G; Zhao S; Zhao L
    Wei Sheng Wu Xue Bao; 2002 Aug; 42(4):465-70. PubMed ID: 12557554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae.
    Zhao Y; He SY; Sundin GW
    Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus x domestica).
    Malnoy M; Reynoird JP; Borejsza-Wysocka EE; Aldwinckle HS
    Transgenic Res; 2006 Feb; 15(1):83-93. PubMed ID: 16475012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbiological Examination of Erwinia amylovora Exopolysaccharide Ooze.
    Slack SM; Zeng Q; Outwater CA; Sundin GW
    Phytopathology; 2017 Apr; 107(4):403-411. PubMed ID: 28045342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular genetics of Erwinia amylovora involved in the development of fire blight.
    Oh CS; Beer SV
    FEMS Microbiol Lett; 2005 Dec; 253(2):185-92. PubMed ID: 16253442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular signature of differential virulence in natural isolates of Erwinia amylovora.
    Wang D; Korban SS; Zhao Y
    Phytopathology; 2010 Feb; 100(2):192-8. PubMed ID: 20055653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the RcsC sensor kinase from Erwinia amylovora and other Enterobacteria.
    Wang D; Korban SS; Pusey PL; Zhao Y
    Phytopathology; 2011 Jun; 101(6):710-7. PubMed ID: 21261468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping.
    Khan MA; Zhao YF; Korban SS
    Physiol Plant; 2013 Jul; 148(3):344-53. PubMed ID: 23627651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The C-terminal half of the HrpN virulence protein of the fire blight pathogen Erwinia amylovora is essential for its secretion and for its virulence and avirulence activities.
    Sinn JP; Oh CS; Jensen PJ; Carpenter SC; Beer SV; McNellis TW
    Mol Plant Microbe Interact; 2008 Nov; 21(11):1387-97. PubMed ID: 18842089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.
    Coyne S; Litomska A; Chizzali C; Khalil MN; Richter K; Beerhues L; Hertweck C
    Chembiochem; 2014 Feb; 15(3):373-6. PubMed ID: 24449489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of luxS in the fire blight pathogen Erwinia amylovora is limited to metabolism and does not involve quorum sensing.
    Rezzonico F; Duffy B
    Mol Plant Microbe Interact; 2007 Oct; 20(10):1284-97. PubMed ID: 17918630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recombinant DNA technology in apple.
    Gessler C; Patocchi A
    Adv Biochem Eng Biotechnol; 2007; 107():113-32. PubMed ID: 17522823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using molecular tools to decipher the complex world of plant resistance inducers: an apple case study.
    Dugé de Bernonville T; Marolleau B; Staub J; Gaucher M; Brisset MN
    J Agric Food Chem; 2014 Nov; 62(47):11403-11. PubMed ID: 25372566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence that prohexadione-calcium induces structural resistance to fire blight infection.
    McGrath MJ; Koczan JM; Kennelly MM; Sundin GW
    Phytopathology; 2009 May; 99(5):591-6. PubMed ID: 19351255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root system traits impact early fire blight susceptibility in apple (Malus × domestica).
    Singh J; Fabrizio J; Desnoues E; Silva JP; Busch W; Khan A
    BMC Plant Biol; 2019 Dec; 19(1):579. PubMed ID: 31870310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Search for host defense markers uncovers an apple agglutination factor corresponding with fire blight resistance.
    Chavonet E; Gaucher M; Warneys R; Bodelot A; Heintz C; Juillard A; Cournol R; Widmalm G; Bowen JK; Hamiaux C; Brisset MN; Degrave A
    Plant Physiol; 2022 Feb; 188(2):1350-1368. PubMed ID: 34904175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp.
    Smits TH; Rezzonico F; Kamber T; Blom J; Goesmann A; Frey JE; Duffy B
    Mol Plant Microbe Interact; 2010 Apr; 23(4):384-93. PubMed ID: 20192826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HIPM Is a Susceptibility Gene of Malus spp.: Reduced Expression Reduces Susceptibility to Erwinia amylovora.
    Campa M; Piazza S; Righetti L; Oh CS; Conterno L; Borejsza-Wysocka E; Nagamangala KC; Beer SV; Aldwinckle HS; Malnoy M
    Mol Plant Microbe Interact; 2019 Feb; 32(2):167-175. PubMed ID: 29996678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.
    Cellini A; Buriani G; Rocchi L; Rondelli E; Savioli S; Rodriguez Estrada MT; Cristescu SM; Costa G; Spinelli F
    Mol Plant Pathol; 2018 Jan; 19(1):158-168. PubMed ID: 27862864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system.
    Pompili V; Dalla Costa L; Piazza S; Pindo M; Malnoy M
    Plant Biotechnol J; 2020 Mar; 18(3):845-858. PubMed ID: 31495052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.