These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 24157214)
1. Short- and long-term physiological responses of grapevine leaves to UV-B radiation. Martínez-Lüscher J; Morales F; Delrot S; Sánchez-Díaz M; Gomés E; Aguirreolea J; Pascual I Plant Sci; 2013 Dec; 213():114-22. PubMed ID: 24157214 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. Martínez-Lüscher J; Morales F; Delrot S; Sánchez-Díaz M; Gomès E; Aguirreolea J; Pascual I Plant Sci; 2015 Mar; 232():13-22. PubMed ID: 25617319 [TBL] [Abstract][Full Text] [Related]
3. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. Salazar-Parra C; Aranjuelo I; Pascual I; Erice G; Sanz-Sáez Á; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F J Plant Physiol; 2015 Feb; 174():97-109. PubMed ID: 25462972 [TBL] [Abstract][Full Text] [Related]
4. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733 [TBL] [Abstract][Full Text] [Related]
5. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Martínez-Lüscher J; Morales F; Sánchez-Díaz M; Delrot S; Aguirreolea J; Gomès E; Pascual I Plant Sci; 2015 Jul; 236():168-76. PubMed ID: 26025530 [TBL] [Abstract][Full Text] [Related]
6. Temperature and CO Greer DH Plant Physiol Biochem; 2017 Feb; 111():295-303. PubMed ID: 27987474 [TBL] [Abstract][Full Text] [Related]
7. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Kolb CA; Käser MA; Kopecký J; Zotz G; Riederer M; Pfündel EE Plant Physiol; 2001 Nov; 127(3):863-75. PubMed ID: 11706169 [TBL] [Abstract][Full Text] [Related]
8. Developmental stage is an important factor that determines the antioxidant responses of young and old grapevine leaves under UV irradiation in a green-house. Majer P; Hideg E Plant Physiol Biochem; 2012 Jan; 50(1):15-23. PubMed ID: 22099515 [TBL] [Abstract][Full Text] [Related]
10. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines. Rogiers SY; Clarke SJ Ann Bot; 2013 Mar; 111(3):433-44. PubMed ID: 23293018 [TBL] [Abstract][Full Text] [Related]
11. Lutein-mediated photoprotection of photosynthetic machinery in Arabidopsis thaliana exposed to chronic low ultraviolet-B radiation. Biswas DK; Ma BL; Xu H; Li Y; Jiang G J Plant Physiol; 2020 May; 248():153160. PubMed ID: 32283468 [TBL] [Abstract][Full Text] [Related]
12. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. Luo HB; Ma L; Xi HF; Duan W; Li SH; Loescher W; Wang JF; Wang LJ PLoS One; 2011; 6(8):e23033. PubMed ID: 21887227 [TBL] [Abstract][Full Text] [Related]
13. UV-B impairs growth and gas exchange in grapevines grown in high altitude. Berli FJ; Alonso R; Bressan-Smith R; Bottini R Physiol Plant; 2013 Sep; 149(1):127-40. PubMed ID: 23167433 [TBL] [Abstract][Full Text] [Related]
14. Photosynthetic response of clusterbean chloroplasts to UV-B radiation: energy imbalance and loss in redox homeostasis between Q(A) and Q(B) of photosystem II. Joshi P; Gartia S; Pradhan MK; Biswal B Plant Sci; 2011 Aug; 181(2):90-5. PubMed ID: 21683872 [TBL] [Abstract][Full Text] [Related]
15. Acclimation of Norway spruce photosynthetic apparatus to the combined effect of high irradiance and temperature. Stroch M; Vrábl D; Podolinská J; Kalina J; Urban O; Spunda V J Plant Physiol; 2010 May; 167(8):597-605. PubMed ID: 20060196 [TBL] [Abstract][Full Text] [Related]
16. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Berli FJ; Moreno D; Piccoli P; Hespanhol-Viana L; Silva MF; Bressan-Smith R; Cavagnaro JB; Bottini R Plant Cell Environ; 2010 Jan; 33(1):1-10. PubMed ID: 19781012 [TBL] [Abstract][Full Text] [Related]
17. Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime. Poulson ME; Boeger MR; Donahue RA Photosynth Res; 2006 Oct; 90(1):79-90. PubMed ID: 17149532 [TBL] [Abstract][Full Text] [Related]
18. Weaker photosynthetic acclimation to fluctuating than to corresponding steady UVB radiation treatments in grapevines. Su-Zhou C; Durand M; Aphalo PJ; Martinez-Abaigar J; Shapiguzov A; Ishihara H; Liu X; Robson TM Physiol Plant; 2024; 176(3):e14383. PubMed ID: 38859677 [TBL] [Abstract][Full Text] [Related]
19. Melia azedarach plants show tolerance properties to water shortage treatment: an ecophysiological study. Dias MC; Azevedo C; Costa M; Pinto G; Santos C Plant Physiol Biochem; 2014 Feb; 75():123-7. PubMed ID: 24440555 [TBL] [Abstract][Full Text] [Related]
20. Climate change (elevated CO₂, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage. Salazar-Parra C; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Morales F Physiol Plant; 2012 Feb; 144(2):99-110. PubMed ID: 21929631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]