These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24157442)
1. Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis. Wang Y; Feng S; Zhan T; Huang Z; Wu G; Liu Z J Biotechnol; 2013 Dec; 168(4):341-7. PubMed ID: 24157442 [TBL] [Abstract][Full Text] [Related]
2. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Zhang ZG; Yi ZL; Pei XQ; Wu ZL Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586 [TBL] [Abstract][Full Text] [Related]
3. Revealing of a novel xylose-binding site of Geobacillus stearothermophilus xylanase by directed evolution. Hegazy UM; El-Khonezy MI; Shokeer A; Abdel-Ghany SS; Bassuny RI; Barakat AZ; Salama WH; Azouz RAM; Fahmy AS J Biochem; 2019 Feb; 165(2):177-184. PubMed ID: 30407509 [TBL] [Abstract][Full Text] [Related]
4. Improving the catalytic efficiency of thermostable Geobacillus stearothermophilus xylanase XT6 by single-amino acid substitution. Azouz RAM; Hegazy UM; Said MM; Bassuiny RI; Salem AM; Fahmy AS J Biochem; 2020 Feb; 167(2):203-215. PubMed ID: 31617574 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Wang Q; Xia T Biotechnol Lett; 2008 May; 30(5):937-44. PubMed ID: 18292971 [TBL] [Abstract][Full Text] [Related]
6. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. Bai W; Cao Y; Liu J; Wang Q; Jia Z BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339 [TBL] [Abstract][Full Text] [Related]
7. Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis. Irfan M; Gonzalez CF; Raza S; Rafiq M; Hasan F; Khan S; Shah AA Enzyme Microb Technol; 2018 Apr; 111():38-47. PubMed ID: 29421035 [TBL] [Abstract][Full Text] [Related]
8. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme. Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197 [TBL] [Abstract][Full Text] [Related]
9. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. Sriprang R; Asano K; Gobsuk J; Tanapongpipat S; Champreda V; Eurwilaichitr L J Biotechnol; 2006 Dec; 126(4):454-62. PubMed ID: 16757052 [TBL] [Abstract][Full Text] [Related]
10. Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution. Xu X; Liu MQ; Huo WK; Dai XJ Enzyme Microb Technol; 2016 May; 86():59-66. PubMed ID: 26992794 [TBL] [Abstract][Full Text] [Related]
11. Histidines 345 and 378 of Bacillus stearothermophilus leucine aminopeptidase II are essential for the catalytic activity of the enzyme. Hwang GY; Kuo LY; Tsai MR; Yang SL; Lin LL Antonie Van Leeuwenhoek; 2005 May; 87(4):355-9. PubMed ID: 15928987 [TBL] [Abstract][Full Text] [Related]
12. Identifying critical unrecognized sugar-protein interactions in GH10 xylanases from Geobacillus stearothermophilus using STD NMR. Balazs YS; Lisitsin E; Carmiel O; Shoham G; Shoham Y; Schmidt A FEBS J; 2013 Sep; 280(18):4652-65. PubMed ID: 23863045 [TBL] [Abstract][Full Text] [Related]
13. Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing. Teplitsky A; Mechaly A; Stojanoff V; Sainz G; Golan G; Feinberg H; Gilboa R; Reiland V; Zolotnitsky G; Shallom D; Thompson A; Shoham Y; Shoham G Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):836-48. PubMed ID: 15103129 [TBL] [Abstract][Full Text] [Related]
14. Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites. Yang J; Ma T; Shang-Guan F; Han Z Enzyme Microb Technol; 2020 Sep; 139():109579. PubMed ID: 32732029 [TBL] [Abstract][Full Text] [Related]
15. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids. Wu X; Tian Z; Jiang X; Zhang Q; Wang L Appl Microbiol Biotechnol; 2018 Jan; 102(1):249-260. PubMed ID: 29103167 [TBL] [Abstract][Full Text] [Related]
16. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase. Acevedo JP; Reetz MT; Asenjo JA; Parra LP Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313 [TBL] [Abstract][Full Text] [Related]
18. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis. Boonyapakron K; Chitnumsub P; Kanokratana P; Champreda V J Biosci Bioeng; 2021 Jan; 131(1):13-19. PubMed ID: 33067124 [TBL] [Abstract][Full Text] [Related]
20. Characterization of xyn10J, a novel family 10 xylanase from a compost metagenomic library. Jeong YS; Na HB; Kim SK; Kim YH; Kwon EJ; Kim J; Yun HD; Lee JK; Kim H Appl Biochem Biotechnol; 2012 Mar; 166(5):1328-39. PubMed ID: 22215253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]