BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24157442)

  • 1. Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis.
    Wang Y; Feng S; Zhan T; Huang Z; Wu G; Liu Z
    J Biotechnol; 2013 Dec; 168(4):341-7. PubMed ID: 24157442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing of a novel xylose-binding site of Geobacillus stearothermophilus xylanase by directed evolution.
    Hegazy UM; El-Khonezy MI; Shokeer A; Abdel-Ghany SS; Bassuny RI; Barakat AZ; Salama WH; Azouz RAM; Fahmy AS
    J Biochem; 2019 Feb; 165(2):177-184. PubMed ID: 30407509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the catalytic efficiency of thermostable Geobacillus stearothermophilus xylanase XT6 by single-amino acid substitution.
    Azouz RAM; Hegazy UM; Said MM; Bassuiny RI; Salem AM; Fahmy AS
    J Biochem; 2020 Feb; 167(2):203-215. PubMed ID: 31617574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution.
    Wang Q; Xia T
    Biotechnol Lett; 2008 May; 30(5):937-44. PubMed ID: 18292971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis.
    Bai W; Cao Y; Liu J; Wang Q; Jia Z
    BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis.
    Irfan M; Gonzalez CF; Raza S; Rafiq M; Hasan F; Khan S; Shah AA
    Enzyme Microb Technol; 2018 Apr; 111():38-47. PubMed ID: 29421035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.
    Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ
    Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis.
    Sriprang R; Asano K; Gobsuk J; Tanapongpipat S; Champreda V; Eurwilaichitr L
    J Biotechnol; 2006 Dec; 126(4):454-62. PubMed ID: 16757052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution.
    Xu X; Liu MQ; Huo WK; Dai XJ
    Enzyme Microb Technol; 2016 May; 86():59-66. PubMed ID: 26992794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histidines 345 and 378 of Bacillus stearothermophilus leucine aminopeptidase II are essential for the catalytic activity of the enzyme.
    Hwang GY; Kuo LY; Tsai MR; Yang SL; Lin LL
    Antonie Van Leeuwenhoek; 2005 May; 87(4):355-9. PubMed ID: 15928987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying critical unrecognized sugar-protein interactions in GH10 xylanases from Geobacillus stearothermophilus using STD NMR.
    Balazs YS; Lisitsin E; Carmiel O; Shoham G; Shoham Y; Schmidt A
    FEBS J; 2013 Sep; 280(18):4652-65. PubMed ID: 23863045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl MAD phasing.
    Teplitsky A; Mechaly A; Stojanoff V; Sainz G; Golan G; Feinberg H; Gilboa R; Reiland V; Zolotnitsky G; Shallom D; Thompson A; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):836-48. PubMed ID: 15103129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites.
    Yang J; Ma T; Shang-Guan F; Han Z
    Enzyme Microb Technol; 2020 Sep; 139():109579. PubMed ID: 32732029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids.
    Wu X; Tian Z; Jiang X; Zhang Q; Wang L
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):249-260. PubMed ID: 29103167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase.
    Acevedo JP; Reetz MT; Asenjo JA; Parra LP
    Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based mutagenesis of Penicillium griseofulvum xylanase using computational design.
    André-Leroux G; Berrin JG; Georis J; Arnaut F; Juge N
    Proteins; 2008 Sep; 72(4):1298-307. PubMed ID: 18384043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues.
    Brüx C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D
    J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis.
    Boonyapakron K; Chitnumsub P; Kanokratana P; Champreda V
    J Biosci Bioeng; 2021 Jan; 131(1):13-19. PubMed ID: 33067124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of xyn10J, a novel family 10 xylanase from a compost metagenomic library.
    Jeong YS; Na HB; Kim SK; Kim YH; Kwon EJ; Kim J; Yun HD; Lee JK; Kim H
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1328-39. PubMed ID: 22215253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.