These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24157442)
21. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis. Rhimi M; Juy M; Aghajari N; Haser R; Bejar S J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581 [TBL] [Abstract][Full Text] [Related]
22. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. Stephens DE; Rumbold K; Permaul K; Prior BA; Singh S J Biotechnol; 2007 Jan; 127(3):348-54. PubMed ID: 16893583 [TBL] [Abstract][Full Text] [Related]
23. Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases. Pollet A; Lagaert S; Eneyskaya E; Kulminskaya A; Delcour JA; Courtin CM Biochim Biophys Acta; 2010 Apr; 1804(4):977-85. PubMed ID: 20096384 [TBL] [Abstract][Full Text] [Related]
24. A single amino acid substitution enhances the catalytic activity of family 11 xylanase at alkaline pH. Shibuya H; Kaneko S; Hayashi K Biosci Biotechnol Biochem; 2005 Aug; 69(8):1492-7. PubMed ID: 16116276 [TBL] [Abstract][Full Text] [Related]
25. An evolutionary route to xylanase process fitness. Palackal N; Brennan Y; Callen WN; Dupree P; Frey G; Goubet F; Hazlewood GP; Healey S; Kang YE; Kretz KA; Lee E; Tan X; Tomlinson GL; Verruto J; Wong VW; Mathur EJ; Short JM; Robertson DE; Steer BA Protein Sci; 2004 Feb; 13(2):494-503. PubMed ID: 14718652 [TBL] [Abstract][Full Text] [Related]
26. Engineering highly thermostable xylanase variants using an enhanced combinatorial library method. Hokanson CA; Cappuccilli G; Odineca T; Bozic M; Behnke CA; Mendez M; Coleman WJ; Crea R Protein Eng Des Sel; 2011 Aug; 24(8):597-605. PubMed ID: 21708791 [TBL] [Abstract][Full Text] [Related]
27. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Mamo G; Thunnissen M; Hatti-Kaul R; Mattiasson B Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261 [TBL] [Abstract][Full Text] [Related]
28. Increase in the thermostability of Bacillus sp. strain TAR-1 xylanase using a site saturation mutagenesis library. Nakatani K; Katano Y; Kojima K; Takita T; Yatsunami R; Nakamura S; Yasukawa K Biosci Biotechnol Biochem; 2018 Oct; 82(10):1715-1723. PubMed ID: 30001680 [TBL] [Abstract][Full Text] [Related]
29. Improvement of binding activity of xylan-binding domain by amino acid substitution. Sakata T; Takakura J; Miyakubo H; Osada Y; Wada R; Takahashi H; Yatsunami R; Fukui T; Nakamura S Nucleic Acids Symp Ser (Oxf); 2006; (50):253-4. PubMed ID: 17150913 [TBL] [Abstract][Full Text] [Related]
30. Error-prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability. Stephens DE; Singh S; Permaul K FEMS Microbiol Lett; 2009 Apr; 293(1):42-7. PubMed ID: 19220468 [TBL] [Abstract][Full Text] [Related]
31. Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis. Zheng H; Liu Y; Sun M; Han Y; Wang J; Sun J; Lu F J Ind Microbiol Biotechnol; 2014 Jan; 41(1):153-62. PubMed ID: 24212471 [TBL] [Abstract][Full Text] [Related]
32. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. Jeong MY; Kim S; Yun CW; Choi YJ; Cho SG J Biotechnol; 2007 Jan; 127(2):300-9. PubMed ID: 16919348 [TBL] [Abstract][Full Text] [Related]
33. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Hwang IT; Lim HK; Song HY; Cho SJ; Chang JS; Park NJ Biotechnol Adv; 2010; 28(5):594-601. PubMed ID: 20493247 [TBL] [Abstract][Full Text] [Related]
34. Study of the active site residues of a glycoside hydrolase family 8 xylanase. Collins T; De Vos D; Hoyoux A; Savvides SN; Gerday C; Van Beeumen J; Feller G J Mol Biol; 2005 Nov; 354(2):425-35. PubMed ID: 16246370 [TBL] [Abstract][Full Text] [Related]
35. Sequence- and structure-guided improvement of the catalytic performance of a GH11 family xylanase from Bacillus subtilis. Wang L; Cao K; Pedroso MM; Wu B; Gao Z; He B; Schenk G J Biol Chem; 2021 Nov; 297(5):101262. PubMed ID: 34600889 [TBL] [Abstract][Full Text] [Related]
36. Improvement of alkaliphily of Bacillus alkaline xylanase by introducing amino acid substitutions both on catalytic cleft and protein surface. Umemoto H; Ihsanawati ; Inami M; Yatsunami R; Fukui T; Kumasaka T; Tanaka N; Nakamura S Biosci Biotechnol Biochem; 2009 Apr; 73(4):965-7. PubMed ID: 19352020 [TBL] [Abstract][Full Text] [Related]
37. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. McHunu NP; Singh S; Permaul K J Biotechnol; 2009 Apr; 141(1-2):26-30. PubMed ID: 19428727 [TBL] [Abstract][Full Text] [Related]
38. Mapping of residues involved in the interaction between the Bacillus subtilis xylanase A and proteinaceous wheat xylanase inhibitors. Sørensen JF; Sibbesen O Protein Eng Des Sel; 2006 May; 19(5):205-10. PubMed ID: 16517552 [TBL] [Abstract][Full Text] [Related]