These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24157550)

  • 21. Wurtzite InP/InAs/InP core-shell nanowires emitting at telecommunication wavelengths on Si substrate.
    Alouane MH; Anufriev R; Chauvin N; Khmissi H; Naji K; Ilahi B; Maaref H; Patriarche G; Gendry M; Bru-Chevallier C
    Nanotechnology; 2011 Oct; 22(40):405702. PubMed ID: 21911925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GaAs nanowire growth on polycrystalline silicon thin films using selective-area MOVPE.
    Ikejiri K; Ishizaka F; Tomioka K; Fukui T
    Nanotechnology; 2013 Mar; 24(11):115304. PubMed ID: 23449458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and optical properties of silver nanowires and silver-nanowire thin films.
    Luu QN; Doorn JM; Berry MT; Jiang C; Lin C; May PS
    J Colloid Interface Sci; 2011 Apr; 356(1):151-8. PubMed ID: 21276588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Yield Growth and Characterization of ⟨100⟩ InP p-n Diode Nanowires.
    Cavalli A; Wang J; Esmaeil Zadeh I; Reimer ME; Verheijen MA; Soini M; Plissard SR; Zwiller V; Haverkort JE; Bakkers EP
    Nano Lett; 2016 May; 16(5):3071-7. PubMed ID: 27045232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.
    Oliveira DS; Zavarize M; Tizei LHG; Walls M; Ospina CA; Iikawa F; Ugarte D; Cotta MA
    Nanotechnology; 2017 Dec; 28(50):505604. PubMed ID: 29099391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dramatically enhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Si structure with highly dense nanowires and ultrathin MgO layers.
    Kim DC; Jung BO; Lee JH; Cho HK; Lee JY; Lee JH
    Nanotechnology; 2011 Jul; 22(26):265506. PubMed ID: 21586813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission.
    Tateno K; Zhang G; Nakano H
    Nano Lett; 2008 Nov; 8(11):3645-50. PubMed ID: 18850750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patterned growth of silicon oxide nanowires from iron ion implanted SiO2 substrates.
    Choi Y; Johnson JL; Ural A
    Nanotechnology; 2009 Apr; 20(13):135307. PubMed ID: 19420498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate.
    Tomioka K; Kobayashi Y; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2009 Apr; 20(14):145302. PubMed ID: 19420521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effect of Buffer Types on the In
    Zhang M; Guo Z; Zhao L; Yang S; Zhao L
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29890689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct.
    Black K; Jones AC; Alexandrou I; Heys PN; Chalker PR
    Nanotechnology; 2010 Jan; 21(4):045701. PubMed ID: 20009167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cathodoluminescence study of the influence of the seed particle preparation method on the optical properties of GaAs nanowires.
    Gustafsson A; Hillerich K; Messing ME; Storm K; Dick KA; Deppert K; Bolinsson J
    Nanotechnology; 2012 Jul; 23(26):265704. PubMed ID: 22699683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Rotational Twin Boundaries and Lattice Mismatch on III-V Nanowire Growth.
    Steidl M; Koppka C; Winterfeld L; Peh K; Galiana B; Supplie O; Kleinschmidt P; Runge E; Hannappel T
    ACS Nano; 2017 Sep; 11(9):8679-8689. PubMed ID: 28881138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-temperature, self-catalyzed growth of Si nanowires.
    Cuscunà M; Convertino A; Mariucci L; Fortunato G; Felisari L; Nicotra G; Spinella C; Pecora A; Martelli F
    Nanotechnology; 2010 Jun; 21(25):255601. PubMed ID: 20508312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition.
    Chang YM; Jian SR; Lee HY; Lin CM; Juang JY
    Nanotechnology; 2010 Sep; 21(38):385705. PubMed ID: 20798465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epitaxial growth of InP nanowires on germanium.
    Bakkers EP; van Dam JA; De Franceschi S; Kouwenhoven LP; Kaiser M; Verheijen M; Wondergem H; van der Sluis P
    Nat Mater; 2004 Nov; 3(11):769-73. PubMed ID: 15475961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamics Controlled Sharp Transformation from InP to GaP Nanowires via Introducing Trace Amount of Gallium.
    Tian Z; Yuan X; Zhang Z; Jia W; Zhou J; Huang H; Meng J; He J; Du Y
    Nanoscale Res Lett; 2021 Mar; 16(1):49. PubMed ID: 33743092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of nitrogen incorporation in HfO(2) grown on InP by atomic layer deposition: an evolution in structural, chemical, and electrical characteristics.
    Kang YS; Kim DK; Kang HK; Jeong KS; Cho MH; Ko DH; Kim H; Seo JH; Kim DC
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3896-906. PubMed ID: 24467437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester.
    Rice AH; Giridharagopal R; Zheng SX; Ohuchi FS; Ginger DS; Luscombe CK
    ACS Nano; 2011 Apr; 5(4):3132-40. PubMed ID: 21443250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman scattering and efficient UV photoluminescence from well-aligned ZnO nanowires epitaxially grown on GaN buffer layer.
    Cheng HM; Hsu HC; Tseng YK; Lin LJ; Hsieh WF
    J Phys Chem B; 2005 May; 109(18):8749-54. PubMed ID: 16852037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.