BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 24157587)

  • 1. Repair of bone defects using a new biomimetic construction fabricated by adipose-derived stem cells, collagen I, and porous beta-tricalcium phosphate scaffolds.
    Yang P; Huang X; Wang C; Dang X; Wang K
    Exp Biol Med (Maywood); 2013 Dec; 238(12):1331-43. PubMed ID: 24157587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold.
    Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M
    Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-beta-TCP scaffold.
    Hao W; Pang L; Jiang M; Lv R; Xiong Z; Hu YY
    J Orthop Res; 2010 Feb; 28(2):252-7. PubMed ID: 19688871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering.
    E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC
    Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. rhVEGF 165 delivered in a porous beta-tricalcium phosphate scaffold accelerates bridging of critical-sized defects in rabbit radii.
    Yang P; Wang C; Shi Z; Huang X; Dang X; Li X; Lin SF; Wang K
    J Biomed Mater Res A; 2010 Feb; 92(2):626-40. PubMed ID: 19235222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Repair of cranial defects with bone marrow derived mesenchymal stem cells and beta-TCP scaffold in rabbits].
    Bo B; Wang CY; Guo XM
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jul; 17(4):335-8. PubMed ID: 12920731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of periodontal tissue regeneration by transplantation of osteoprotegerin-engineered periodontal ligament stem cells.
    Su F; Liu SS; Ma JL; Wang DS; E LL; Liu HC
    Stem Cell Res Ther; 2015 Mar; 6(1):22. PubMed ID: 25888745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold.
    Liu G; Zhang Y; Liu B; Sun J; Li W; Cui L
    Biomaterials; 2013 Apr; 34(11):2655-64. PubMed ID: 23343633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects.
    Deng Y; Zhou H; Zou D; Xie Q; Bi X; Gu P; Fan X
    Biomaterials; 2013 Sep; 34(28):6717-28. PubMed ID: 23768901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of serum-derived albumin scaffold and canine adipose tissue-derived mesenchymal stem cells on osteogenesis in canine segmental bone defect model.
    Yoon D; Kang BJ; Kim Y; Lee SH; Rhew D; Kim WH; Kweon OK
    J Vet Sci; 2015; 16(4):397-404. PubMed ID: 26119162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Repair of calvarial defect using a tissue-engineered bone with simvastatin-loaded β-tricalcium phosphate scaffold and adipose derived stem cells in rabbits].
    Xu LY; Sun XJ; Zhang XL; Jin YQ; Wu YQ; Jiang XQ
    Shanghai Kou Qiang Yi Xue; 2013 Aug; 22(4):361-7. PubMed ID: 24100891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors of osteogenesis influencing various human stem cells on third-generation gelatin/β-tricalcium phosphate scaffold material.
    Weinand C; Nabili A; Khumar M; Dunn JR; Ramella-Roman J; Jeng JC; Jordan MH; Tabata Y
    Rejuvenation Res; 2011 Apr; 14(2):185-94. PubMed ID: 21235414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study.
    Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A
    J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of adipose scaffold for bone repair with gene engineering bone cells.
    Li W; Fan J; Chen F; Yang W; Su J; Bi Z
    Exp Biol Med (Maywood); 2013 Dec; 238(12):1350-4. PubMed ID: 24131542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects.
    Chen D; Shen H; He Y; Chen Y; Wang Q; Lu J; Jiang Y
    Mol Med Rep; 2015 Feb; 11(2):1111-9. PubMed ID: 25373389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.