These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24157615)
1. Gustatory receptor expression in the labella and tarsi of Aedes aegypti. Sparks JT; Vinyard BT; Dickens JC Insect Biochem Mol Biol; 2013 Dec; 43(12):1161-71. PubMed ID: 24157615 [TBL] [Abstract][Full Text] [Related]
2. The genetics of chemoreception in the labella and tarsi of Aedes aegypti. Sparks JT; Bohbot JD; Dickens JC Insect Biochem Mol Biol; 2014 May; 48():8-16. PubMed ID: 24582661 [TBL] [Abstract][Full Text] [Related]
3. In Silico Characterisation of the Bibi M; Hussain A; Ali F; Ali A; Said F; Tariq K; Yun BW Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569638 [No Abstract] [Full Text] [Related]
4. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses. Vazeille M; Yébakima A; Lourenço-de-Oliveira R; Andriamahefazafy B; Correira A; Rodrigues JM; Veiga A; Moreira A; Leparc-Goffart I; Grandadam M; Failloux AB Vector Borne Zoonotic Dis; 2013 Jan; 13(1):37-40. PubMed ID: 23199267 [TBL] [Abstract][Full Text] [Related]
5. The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Kent LB; Walden KK; Robertson HM Chem Senses; 2008 Jan; 33(1):79-93. PubMed ID: 17928357 [TBL] [Abstract][Full Text] [Related]
7. Identification of germline transcriptional regulatory elements in Aedes aegypti. Akbari OS; Papathanos PA; Sandler JE; Kennedy K; Hay BA Sci Rep; 2014 Feb; 4():3954. PubMed ID: 24492376 [TBL] [Abstract][Full Text] [Related]
8. Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti. Hussain M; Walker T; O'Neill SL; Asgari S Insect Biochem Mol Biol; 2013 Feb; 43(2):146-52. PubMed ID: 23202267 [TBL] [Abstract][Full Text] [Related]
9. The invaders: phylogeography of dengue and chikungunya viruses Aedes vectors, on the South West islands of the Indian Ocean. Delatte H; Bagny L; Brengue C; Bouetard A; Paupy C; Fontenille D Infect Genet Evol; 2011 Oct; 11(7):1769-81. PubMed ID: 21827872 [TBL] [Abstract][Full Text] [Related]
10. Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of Aedes albopictus from Brazil, the United States, and the Cayman Islands. Lourenço de Oliveira R; Vazeille M; de Filippis AM; Failloux AB Am J Trop Med Hyg; 2003 Jul; 69(1):105-14. PubMed ID: 12932107 [TBL] [Abstract][Full Text] [Related]
11. Yellow fever vaccination centers: concurrent vaccinations and updates on mosquito biology. Arya SC; Agarwal N Travel Med Infect Dis; 2012 Sep; 10(5-6):257-8. PubMed ID: 22613468 [TBL] [Abstract][Full Text] [Related]
12. Physiological recordings and RNA sequencing of the gustatory appendages of the yellow-fever mosquito Aedes aegypti. Sparks JT; Dickens JC J Vis Exp; 2014 Dec; (94):. PubMed ID: 25590536 [TBL] [Abstract][Full Text] [Related]
13. [The risk of urban yellow fever outbreaks in Brazil by dengue vectors. Aedes aegypti and Aedes albopictus]. Mondet B; da Rosa AP; Vasconcelos PF Bull Soc Pathol Exot; 1996; 89(2):107-13; discussion 114. PubMed ID: 8924767 [TBL] [Abstract][Full Text] [Related]
14. Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Melo AC; Rützler M; Pitts RJ; Zwiebel LJ Chem Senses; 2004 Jun; 29(5):403-10. PubMed ID: 15201207 [TBL] [Abstract][Full Text] [Related]
15. Introduction of Aedes albopictus in Gabon: what consequences for dengue and chikungunya transmission? Vazeille M; Moutailler S; Pages F; Jarjaval F; Failloux AB Trop Med Int Health; 2008 Sep; 13(9):1176-9. PubMed ID: 18631309 [TBL] [Abstract][Full Text] [Related]
16. [Aedes aegypti L. and Aedes albopictus Skuse mosquitoes are a new biological threat to the south of Russia]. Ganushkina LA; Dremova VP Med Parazitol (Mosk); 2012; (3):49-55. PubMed ID: 23088153 [No Abstract] [Full Text] [Related]
17. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. Leming MT; Rund SS; Behura SK; Duffield GE; O'Tousa JE BMC Genomics; 2014 Dec; 15(1):1128. PubMed ID: 25516260 [TBL] [Abstract][Full Text] [Related]
18. Outbreak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: Culicidae). Thavara U; Tawatsin A; Pengsakul T; Bhakdeenuan P; Chanama S; Anantapreecha S; Molito C; Chompoosri J; Thammapalo S; Sawanpanyalert P; Siriyasatien P Southeast Asian J Trop Med Public Health; 2009 Sep; 40(5):951-62. PubMed ID: 19842379 [TBL] [Abstract][Full Text] [Related]
19. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Zhou JJ; He XL; Pickett JA; Field LM Insect Mol Biol; 2008 Apr; 17(2):147-63. PubMed ID: 18353104 [TBL] [Abstract][Full Text] [Related]
20. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Sirot LK; Poulson RL; McKenna MC; Girnary H; Wolfner MF; Harrington LC Insect Biochem Mol Biol; 2008 Feb; 38(2):176-89. PubMed ID: 18207079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]