These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 24157701)
1. Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Ren J; Chen Z; Duan W; Song X; Liu T; Wang J; Hou X; Li Y Plant Physiol Biochem; 2013 Dec; 73():229-36. PubMed ID: 24157701 [TBL] [Abstract][Full Text] [Related]
2. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish. Xu Y; Zhu X; Chen Y; Gong Y; Liu L Plant Physiol Biochem; 2013 Sep; 70():269-77. PubMed ID: 23800662 [TBL] [Abstract][Full Text] [Related]
3. High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruits. Suekawa M; Fujikawa Y; Inoue A; Kondo T; Uchida E; Koizumi T; Esaka M Biosci Biotechnol Biochem; 2019 Sep; 83(9):1713-1716. PubMed ID: 31023155 [TBL] [Abstract][Full Text] [Related]
4. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Imai T; Ban Y; Terakami S; Yamamoto T; Moriguchi T Physiol Plant; 2009 Jun; 136(2):139-49. PubMed ID: 19453508 [TBL] [Abstract][Full Text] [Related]
5. L-ascorbic acid biosynthesis. Smirnoff N Vitam Horm; 2001; 61():241-66. PubMed ID: 11153268 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. Zhang GY; Liu RR; Zhang CQ; Tang KX; Sun MF; Yan GH; Liu QQ PLoS One; 2015; 10(5):e0125870. PubMed ID: 25938231 [TBL] [Abstract][Full Text] [Related]
7. L-ascorbic acid metabolism in an ascorbate-rich kiwifruit (Actinidia. Eriantha Benth.) cv. 'White' during postharvest. Jiang ZY; Zhong Y; Zheng J; Ali M; Liu GD; Zheng XL Plant Physiol Biochem; 2018 Mar; 124():20-28. PubMed ID: 29331889 [TBL] [Abstract][Full Text] [Related]
8. Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Li M; Ma F; Guo C; Liu J Plant Physiol Biochem; 2010 Apr; 48(4):216-24. PubMed ID: 20159657 [TBL] [Abstract][Full Text] [Related]
9. AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/l-galactose ascorbic acid biosynthetic pathway. Zhang W; Lorence A; Gruszewski HA; Chevone BI; Nessler CL Plant Physiol; 2009 Jun; 150(2):942-50. PubMed ID: 19395407 [TBL] [Abstract][Full Text] [Related]
10. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Hu T; Ye J; Tao P; Li H; Zhang J; Zhang Y; Ye Z Plant J; 2016 Jan; 85(1):16-29. PubMed ID: 26610866 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of L-ascorbic acid in the phloem. Hancock RD; McRae D; Haupt S; Viola R BMC Plant Biol; 2003 Nov; 3():7. PubMed ID: 14633288 [TBL] [Abstract][Full Text] [Related]
12. Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Yoshimura K; Nakane T; Kume S; Shiomi Y; Maruta T; Ishikawa T; Shigeoka S Biosci Biotechnol Biochem; 2014; 78(1):60-6. PubMed ID: 25036484 [TBL] [Abstract][Full Text] [Related]
13. The d-mannose/l-galactose pathway is the dominant ascorbate biosynthetic route in the moss Physcomitrium patens. Sodeyama T; Nishikawa H; Harai K; Takeshima D; Sawa Y; Maruta T; Ishikawa T Plant J; 2021 Sep; 107(6):1724-1738. PubMed ID: 34245628 [TBL] [Abstract][Full Text] [Related]
14. Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. Alós E; Rodrigo MJ; Zacarías L Planta; 2014 May; 239(5):1113-28. PubMed ID: 24567029 [TBL] [Abstract][Full Text] [Related]
15. Biosynthetic Gene Pyramiding Leads to Ascorbate Accumulation with Enhanced Oxidative Stress Tolerance in Tomato. Li X; Ye J; Munir S; Yang T; Chen W; Liu G; Zheng W; Zhang Y Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30925709 [TBL] [Abstract][Full Text] [Related]
16. The biosynthetic pathway of vitamin C in higher plants. Wheeler GL; Jones MA; Smirnoff N Nature; 1998 May; 393(6683):365-9. PubMed ID: 9620799 [TBL] [Abstract][Full Text] [Related]
17. BcPMI2, isolated from non-heading Chinese cabbage encoding phosphomannose isomerase, improves stress tolerance in transgenic tobacco. Wang X; Zhang S; Hu D; Zhao X; Li Y; Liu T; Wang J; Hou X; Li Y Mol Biol Rep; 2014; 41(4):2207-16. PubMed ID: 24430300 [TBL] [Abstract][Full Text] [Related]
18. Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. Li M; Ma F; Liang D; Li J; Wang Y PLoS One; 2010 Dec; 5(12):e14281. PubMed ID: 21151561 [TBL] [Abstract][Full Text] [Related]
19. 2-Keto-L-Gulonic Acid Improved the Salt Stress Resistance of Non-heading Chinese Cabbage by Increasing L-Ascorbic Acid Accumulation. Gao M; Sun H; Shi M; Wu Q; Ji D; Wang B; Zhang L; Liu Y; Han L; Ruan X; Xu H; Yang W Front Plant Sci; 2021; 12():697184. PubMed ID: 34804078 [TBL] [Abstract][Full Text] [Related]
20. Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. Badejo AA; Wada K; Gao Y; Maruta T; Sawa Y; Shigeoka S; Ishikawa T J Exp Bot; 2012 Jan; 63(1):229-39. PubMed ID: 21984649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]