BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 24157701)

  • 1. Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars.
    Ren J; Chen Z; Duan W; Song X; Liu T; Wang J; Hou X; Li Y
    Plant Physiol Biochem; 2013 Dec; 73():229-36. PubMed ID: 24157701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish.
    Xu Y; Zhu X; Chen Y; Gong Y; Liu L
    Plant Physiol Biochem; 2013 Sep; 70():269-77. PubMed ID: 23800662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruits.
    Suekawa M; Fujikawa Y; Inoue A; Kondo T; Uchida E; Koizumi T; Esaka M
    Biosci Biotechnol Biochem; 2019 Sep; 83(9):1713-1716. PubMed ID: 31023155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development.
    Imai T; Ban Y; Terakami S; Yamamoto T; Moriguchi T
    Physiol Plant; 2009 Jun; 136(2):139-49. PubMed ID: 19453508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-ascorbic acid biosynthesis.
    Smirnoff N
    Vitam Horm; 2001; 61():241-66. PubMed ID: 11153268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance.
    Zhang GY; Liu RR; Zhang CQ; Tang KX; Sun MF; Yan GH; Liu QQ
    PLoS One; 2015; 10(5):e0125870. PubMed ID: 25938231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-ascorbic acid metabolism in an ascorbate-rich kiwifruit (Actinidia. Eriantha Benth.) cv. 'White' during postharvest.
    Jiang ZY; Zhong Y; Zheng J; Ali M; Liu GD; Zheng XL
    Plant Physiol Biochem; 2018 Mar; 124():20-28. PubMed ID: 29331889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages.
    Li M; Ma F; Guo C; Liu J
    Plant Physiol Biochem; 2010 Apr; 48(4):216-24. PubMed ID: 20159657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/l-galactose ascorbic acid biosynthetic pathway.
    Zhang W; Lorence A; Gruszewski HA; Chevone BI; Nessler CL
    Plant Physiol; 2009 Jun; 150(2):942-50. PubMed ID: 19395407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway.
    Hu T; Ye J; Tao P; Li H; Zhang J; Zhang Y; Ye Z
    Plant J; 2016 Jan; 85(1):16-29. PubMed ID: 26610866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of L-ascorbic acid in the phloem.
    Hancock RD; McRae D; Haupt S; Viola R
    BMC Plant Biol; 2003 Nov; 3():7. PubMed ID: 14633288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis.
    Yoshimura K; Nakane T; Kume S; Shiomi Y; Maruta T; Ishikawa T; Shigeoka S
    Biosci Biotechnol Biochem; 2014; 78(1):60-6. PubMed ID: 25036484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The d-mannose/l-galactose pathway is the dominant ascorbate biosynthetic route in the moss Physcomitrium patens.
    Sodeyama T; Nishikawa H; Harai K; Takeshima D; Sawa Y; Maruta T; Ishikawa T
    Plant J; 2021 Sep; 107(6):1724-1738. PubMed ID: 34245628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation.
    Alós E; Rodrigo MJ; Zacarías L
    Planta; 2014 May; 239(5):1113-28. PubMed ID: 24567029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic Gene Pyramiding Leads to Ascorbate Accumulation with Enhanced Oxidative Stress Tolerance in Tomato.
    Li X; Ye J; Munir S; Yang T; Chen W; Liu G; Zheng W; Zhang Y
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30925709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biosynthetic pathway of vitamin C in higher plants.
    Wheeler GL; Jones MA; Smirnoff N
    Nature; 1998 May; 393(6683):365-9. PubMed ID: 9620799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BcPMI2, isolated from non-heading Chinese cabbage encoding phosphomannose isomerase, improves stress tolerance in transgenic tobacco.
    Wang X; Zhang S; Hu D; Zhao X; Li Y; Liu T; Wang J; Hou X; Li Y
    Mol Biol Rep; 2014; 41(4):2207-16. PubMed ID: 24430300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi.
    Li M; Ma F; Liang D; Li J; Wang Y
    PLoS One; 2010 Dec; 5(12):e14281. PubMed ID: 21151561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Keto-L-Gulonic Acid Improved the Salt Stress Resistance of Non-heading Chinese Cabbage by Increasing L-Ascorbic Acid Accumulation.
    Gao M; Sun H; Shi M; Wu Q; Ji D; Wang B; Zhang L; Liu Y; Han L; Ruan X; Xu H; Yang W
    Front Plant Sci; 2021; 12():697184. PubMed ID: 34804078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway.
    Badejo AA; Wada K; Gao Y; Maruta T; Sawa Y; Shigeoka S; Ishikawa T
    J Exp Bot; 2012 Jan; 63(1):229-39. PubMed ID: 21984649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.