BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24158299)

  • 1. Correspondence: Spatial variations of viscoelastic properties of porcine vitreous humors.
    Yoon S; Aglyamov S; Karpiouk A; Emelianov S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2453-60. PubMed ID: 24158299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations.
    Yoon S; Aglyamov S; Karpiouk A; Emelianov S
    Ultrasound Med Biol; 2013 Jun; 39(6):1120-7. PubMed ID: 23453376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of mechanical properties of a viscoelastic medium using a laser-induced microbubble interrogated by an acoustic radiation force.
    Yoon S; Aglyamov SR; Karpiouk AB; Kim S; Emelianov SY
    J Acoust Soc Am; 2011 Oct; 130(4):2241-8. PubMed ID: 21973379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.
    Yoon S; Aglyamov S; Karpiouk A; Emelianov S
    Phys Med Biol; 2012 Aug; 57(15):4871-84. PubMed ID: 22797709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force.
    Erpelding TN; Hollman KW; O'Donnell M
    Exp Eye Res; 2007 Feb; 84(2):332-41. PubMed ID: 17141220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of the vitreous body: Part 2. Viscoelasticity of bovine and porcine vitreous.
    Lee B; Litt M; Buchsbaum G
    Biorheology; 1994; 31(4):327-38. PubMed ID: 7981433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation.
    Han Z; Aglyamov SR; Li J; Singh M; Wang S; Vantipalli S; Wu C; Liu CH; Twa MD; Larin KV
    J Biomed Opt; 2015 Feb; 20(2):20501. PubMed ID: 25649624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force.
    Bezer JH; Koruk H; Rowlands CJ; Choi JJ
    Ultrasound Med Biol; 2020 Dec; 46(12):3327-3338. PubMed ID: 32919812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic properties of normal and infarcted myocardium measured by a multifrequency shear wave method: comparison with pressure-segment length method.
    Pislaru C; Urban MW; Pislaru SV; Kinnick RR; Greenleaf JF
    Ultrasound Med Biol; 2014 Aug; 40(8):1785-95. PubMed ID: 24814645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of an Elasticity Map in the Human Cornea.
    Mikula ER; Jester JV; Juhasz T
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3282-6. PubMed ID: 27327584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of an oscillating viscoelastic sphere: a model of the vitreous humor of the eye.
    Buchsbaum G; Sternklar M; Litt M; Grunwald JE; Riva CE
    Biorheology; 1984; 21(1-2):285-96. PubMed ID: 6466795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.
    Li Y; Deng J; Zhou J; Li X
    J Mater Sci Mater Med; 2016 Nov; 27(11):163. PubMed ID: 27646405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties.
    Sharif-Kashani P; Hubschman JP; Sassoon D; Kavehpour HP
    J Biomech; 2011 Feb; 44(3):419-23. PubMed ID: 21040921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C; Urban MW; Chen S; Greenleaf JF
    Phys Med Biol; 2012 Mar; 57(5):1263-82. PubMed ID: 22345425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
    Erpelding TN; Hollman KW; O'Donnell M
    Ultrasound Med Biol; 2007 Feb; 33(2):263-9. PubMed ID: 17306697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach.
    Huang CC; Chen PY; Shih CC
    Med Phys; 2013 Apr; 40(4):042901. PubMed ID: 23556923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cut rates on fluidic behavior of chopped vitreous.
    Sharif-Kashani P; Nishida K; Pirouz Kavehpour H; Schwartz SD; Hubschman JP
    Retina; 2013 Jan; 33(1):166-9. PubMed ID: 22914683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitreous humor rheology after Nd:YAG laser photo disruption.
    Abdelkawi SA; Abdel-Salam AM; Ghoniem DF; Ghaly SK
    Cell Biochem Biophys; 2014 Mar; 68(2):267-74. PubMed ID: 23797611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo measurements of the viscoelasticity of the human vitreous humor.
    Zimmerman RL
    Biophys J; 1980 Mar; 29(3):539-44. PubMed ID: 7295871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.