BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 24158403)

  • 21. Current concepts of amino acid and protein metabolism in the mammary gland of the lactating ruminant.
    Bequette BJ; Backwell FR; Crompton LA
    J Dairy Sci; 1998 Sep; 81(9):2540-59. PubMed ID: 9785247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bovine glucose transporter GLUT8: cloning, expression, and developmental regulation in mammary gland.
    Zhao FQ; Miller PJ; Wall EH; Zheng YC; Dong B; Neville MC; McFadden TB
    Biochim Biophys Acta; 2004 Oct; 1680(2):103-13. PubMed ID: 15488990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biology of glucose transport in the mammary gland.
    Zhao FQ
    J Mammary Gland Biol Neoplasia; 2014 Mar; 19(1):3-17. PubMed ID: 24221747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneity of cationic amino acid transport systems in mouse mammary gland and their regulation by lactogenic hormones.
    Sharma R; Kansal VK
    J Dairy Res; 2000 Feb; 67(1):21-30. PubMed ID: 10717840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Symposium review: Amino acid uptake by the mammary glands: Where does the control lie?
    Cant JP; Kim JJM; Cieslar SRL; Doelman J
    J Dairy Sci; 2018 Jun; 101(6):5655-5666. PubMed ID: 29605320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of amino acid metabolism during intense lactation.
    Baracos VE
    Curr Opin Clin Nutr Metab Care; 2006 Jan; 9(1):48-52. PubMed ID: 16444819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of premature weaning on amino acid uptake by the mammary gland of lactating rats.
    Viña JR; Puertes IR; Viña J
    Biochem J; 1981 Dec; 200(3):705-8. PubMed ID: 6123312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulation of Na(+)-dependent anionic amino acid transport by the rat mammary gland.
    Millar ID; Shennan DB
    Biochim Biophys Acta; 1999 Oct; 1421(2):340-6. PubMed ID: 10518703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide transport in the mammary gland: expression and distribution of PEPT2 mRNA and protein.
    Groneberg DA; Döring F; Theis S; Nickolaus M; Fischer A; Daniel H
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1172-9. PubMed ID: 11934684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutritional control of amino acid supply to the mammary gland during lactation in the pig.
    Trottier NL
    Proc Nutr Soc; 1997 Jul; 56(2):581-91. PubMed ID: 9264109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of specific inhibition of gamma-glutamyl transpeptidase on amino acid uptake by mammary gland of the lactating rat.
    Viña J; Puertes IR; Montoro JB; Viña JR
    FEBS Lett; 1983 Aug; 159(1-2):119-22. PubMed ID: 6135627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aquaporin water channels in the mammary gland: from physiology to pathophysiology and neoplasia.
    Mobasheri A; Barrett-Jolley R
    J Mammary Gland Biol Neoplasia; 2014 Mar; 19(1):91-102. PubMed ID: 24338153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Serotonin: a local regulator in the mammary gland epithelium.
    Horseman ND; Collier RJ
    Annu Rev Anim Biosci; 2014 Feb; 2():353-74. PubMed ID: 25384147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and regulation of the gene expression of amino acid transport system A (SNAT2) in rat mammary gland.
    López A; Torres N; Ortiz V; Alemán G; Hernández-Pando R; Tovar AR
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1059-66. PubMed ID: 16787963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of prolactin and vasoinhibins in the regulation of vascular function in mammary gland.
    Clapp C; Thebault S; Martínez de la Escalera G
    J Mammary Gland Biol Neoplasia; 2008 Mar; 13(1):55-67. PubMed ID: 18204888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of free glutamate in milk requires the leucine transporter LAT1.
    Matsumoto T; Nakamura E; Nakamura H; Hirota M; San Gabriel A; Nakamura K; Chotechuang N; Wu G; Uneyama H; Torii K
    Am J Physiol Cell Physiol; 2013 Sep; 305(6):C623-31. PubMed ID: 23804198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid utilization by lactating mammary gland.
    Mepham TB
    J Dairy Sci; 1982 Feb; 65(2):287-98. PubMed ID: 7042785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcellular calcium transport in mammary epithelial cells.
    VanHouten JN; Wysolmerski JJ
    J Mammary Gland Biol Neoplasia; 2007 Dec; 12(4):223-35. PubMed ID: 17999165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Correlation between the organ blood flow, substrate absorption from blood, the activity of transport into mammary gland secretory cells and formation milk components in cow].
    Makar ZN; Cherepanov GG; Boiarshinov IA; Korneeva RI; Matiushenko PV; Tokarev TIu
    Ross Fiziol Zh Im I M Sechenova; 2003 Aug; 89(8):951-9. PubMed ID: 15119190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilization of dipeptides by the caprine mammary gland for milk protein synthesis.
    Backwell FR; Bequette BJ; Wilson D; Calder AG; Metcalf JA; Wray-Cahen D; MacRae JC; Beever DE; Lobley GE
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R1-6. PubMed ID: 8048612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.