These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24158439)

  • 1. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism.
    Murray DS; Chinnam N; Tonthat NK; Whitfill T; Wray LV; Fisher SH; Schumacher MA
    J Biol Chem; 2013 Dec; 288(50):35801-11. PubMed ID: 24158439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis.
    Schumacher MA; Chinnam NB; Cuthbert B; Tonthat NK; Whitfill T
    Genes Dev; 2015 Feb; 29(4):451-64. PubMed ID: 25691471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis.
    Hauf K; Kayumov A; Gloge F; Forchhammer K
    J Biol Chem; 2016 Feb; 291(7):3483-95. PubMed ID: 26635369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional roles of the conserved Glu304 loop of Bacillus subtilis glutamine synthetase.
    Wray LV; Fisher SH
    J Bacteriol; 2010 Oct; 192(19):5018-25. PubMed ID: 20656908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamine synthetase isoforms in nitrogen-fixing soybean nodules: distinct oligomeric structures and thiol-based regulation.
    Masalkar PD; Roberts DM
    FEBS Lett; 2015 Jan; 589(2):215-21. PubMed ID: 25497014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria.
    Travis BA; Peck JV; Salinas R; Dopkins B; Lent N; Nguyen VD; Borgnia MJ; Brennan RG; Schumacher MA
    Nat Commun; 2022 Jul; 13(1):3793. PubMed ID: 35778410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Insight into the Contributions of the N-Terminus and Key Active-Site Residues to the Catalytic Efficiency of Glutamine Synthetase 2.
    Chen WT; Yang HY; Lin CY; Lee YZ; Ma SC; Chen WC; Yin HS
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33327463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback-resistant mutations in Bacillus subtilis glutamine synthetase are clustered in the active site.
    Fisher SH; Wray LV
    J Bacteriol; 2006 Aug; 188(16):5966-74. PubMed ID: 16885465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the glutamyl-tRNA(Gln)-to-glutaminyl-tRNA(Gln) amidotransferase reaction of Bacillus subtilis.
    Strauch MA; Zalkin H; Aronson AI
    J Bacteriol; 1988 Feb; 170(2):916-20. PubMed ID: 2892827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of Bacillus subtilis glutamine synthetase by metal-catalyzed oxidation.
    Kimura K; Sugano S
    J Biochem; 1992 Dec; 112(6):828-33. PubMed ID: 1363551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feedback-resistant mutant of Bacillus subtilis glutamine synthetase with pleiotropic defects in nitrogen-regulated gene expression.
    Wray LV; Fisher SH
    J Biol Chem; 2005 Sep; 280(39):33298-304. PubMed ID: 16055443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase.
    Chuenchor W; Doukov TI; Resto M; Chang A; Gerratana B
    Biochem J; 2012 Apr; 443(2):417-26. PubMed ID: 22280445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Analysis of Glutamine Synthetase from Helicobacter pylori.
    Joo HK; Park YW; Jang YY; Lee JY
    Sci Rep; 2018 Aug; 8(1):11657. PubMed ID: 30076387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme.
    Dean DR; Hoch JA; Aronson AI
    J Bacteriol; 1977 Sep; 131(3):981-7. PubMed ID: 19424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of Type III glutamine synthetase: surprising reversal of the inter-ring interface.
    van Rooyen JM; Abratt VR; Belrhali H; Sewell T
    Structure; 2011 Apr; 19(4):471-83. PubMed ID: 21481771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in Bacillus subtilis glutamine synthetase that block its interaction with transcription factor TnrA.
    Fisher SH; Brandenburg JL; Wray LV
    Mol Microbiol; 2002 Aug; 45(3):627-35. PubMed ID: 12139611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis.
    Fedorova K; Kayumov A; Woyda K; Ilinskaja O; Forchhammer K
    FEBS Lett; 2013 May; 587(9):1293-8. PubMed ID: 23535029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes.
    Fisher SH; Wray LV
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):1014-9. PubMed ID: 18195355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glutamine synthetase from Bacillus subtilis by divalent cations, feedback inhibitors, and L-glutamine.
    Deuel TF; Prusiner S
    J Biol Chem; 1974 Jan; 249(1):257-64. PubMed ID: 4149044
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.