These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24158538)

  • 1. An efficient, nonlinear stability analysis for detecting pattern formation in reaction diffusion systems.
    Holmes WR
    Bull Math Biol; 2014 Jan; 76(1):157-83. PubMed ID: 24158538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.
    Maybank PJ; Whiteley JP
    Math Biosci; 2014 Feb; 248():146-57. PubMed ID: 24418010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Curvature, Growth, and Anisotropy on the Evolution of Turing Patterns on Growing Manifolds.
    Krause AL; Ellis MA; Van Gorder RA
    Bull Math Biol; 2019 Mar; 81(3):759-799. PubMed ID: 30511207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turing Pattern Formation in a Semiarid Vegetation Model with Fractional-in-Space Diffusion.
    Tian C
    Bull Math Biol; 2015 Nov; 77(11):2072-85. PubMed ID: 26511752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.
    Brandt-Pollmann U; Lebiedz D; Diehl M; Sager S; Schlöder J
    Chaos; 2005 Sep; 15(3):33901. PubMed ID: 16252992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces.
    Dhillon DS; Milinkovitch MC; Zwicker M
    Bull Math Biol; 2017 Apr; 79(4):788-827. PubMed ID: 28247120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear stability analyses of Turing patterns for a mussel-algae model.
    Cangelosi RA; Wollkind DJ; Kealy-Dichone BJ; Chaiya I
    J Math Biol; 2015 May; 70(6):1249-94. PubMed ID: 24832542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Spatial Heterogeneity Affects Transient Behavior in Reaction-Diffusion Systems for Ecological Interactions?
    Wang X; Efendiev M; Lutscher F
    Bull Math Biol; 2019 Oct; 81(10):3889-3917. PubMed ID: 31444675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern formation in multiphase models of chemotactic cell aggregation.
    Green JEF; Whiteley JP; Oliver JM; Byrne HM; Waters SL
    Math Med Biol; 2018 Sep; 35(3):319-346. PubMed ID: 28520976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of non-trivial solutions from trivial solutions in reaction-diffusion equations for pattern formation.
    Zhao XE; Hao W
    Math Biosci; 2024 Aug; 374():109222. PubMed ID: 38830572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turing Instability and Colony Formation in Spatially Extended Rosenzweig-MacArthur Predator-Prey Models with Allochthonous Resources.
    Zhou Z; Van Gorder RA
    Bull Math Biol; 2019 Dec; 81(12):5009-5053. PubMed ID: 31595381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems.
    Chiu C; Yu JL
    Math Biosci Eng; 2007 Apr; 4(2):187-203. PubMed ID: 17658923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turing Pattern Formation in Reaction-Cross-Diffusion Systems with a Bilayer Geometry.
    Diez A; Krause AL; Maini PK; Gaffney EA; Seirin-Lee S
    Bull Math Biol; 2024 Jan; 86(2):13. PubMed ID: 38170298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.
    Bendahmane M; Ruiz-Baier R; Tian C
    J Math Biol; 2016 May; 72(6):1441-65. PubMed ID: 26219250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turing patterns in a predator-prey model with seasonality.
    Wang X; Lutscher F
    J Math Biol; 2019 Feb; 78(3):711-737. PubMed ID: 30155778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration-Dependent Domain Evolution in Reaction-Diffusion Systems.
    Krause AL; Gaffney EA; Walker BJ
    Bull Math Biol; 2023 Jan; 85(2):14. PubMed ID: 36637542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Aspects in Pattern Formation Arise from Coupling Turing Reaction-Diffusion and Chemotaxis.
    Fraga Delfino Kunz C; Gerisch A; Glover J; Headon D; Painter KJ; Matthäus F
    Bull Math Biol; 2023 Dec; 86(1):4. PubMed ID: 38038776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear and Weakly Nonlinear Stability Analyses of Turing Patterns for Diffusive Predator-Prey Systems in Freshwater Marsh Landscapes.
    Zhang L; Zhang F; Ruan S
    Bull Math Biol; 2017 Mar; 79(3):560-593. PubMed ID: 28138877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of parameters in systems biology.
    Abdulla UG; Poteau R
    Math Biosci; 2018 Nov; 305():133-145. PubMed ID: 30217694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations.
    Madzvamuse A; Ndakwo HS; Barreira R
    J Math Biol; 2015 Mar; 70(4):709-43. PubMed ID: 24671430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.