These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 2415868)

  • 1. Spontaneous spinal cord "injury potential" in the rat.
    Goodman RM; Wachs K; Keller S; Black P
    Neurosurgery; 1985 Nov; 17(5):757-9. PubMed ID: 2415868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Local spinal cord glucose utilization and extracellular potassium activity changes after spinal cord injury in rats].
    Murai H; Itoh C; Wagai N; Nakamura T; Yamaura A; Makino H
    No To Shinkei; 1991 Apr; 43(4):337-42. PubMed ID: 1888573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of experimental spinal cord injury by measuring spontaneous spinal cord potentials.
    Molt JT; Poulos DA; Bourke RS
    J Neurosurg; 1978 Jun; 48(6):985-92. PubMed ID: 660251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interstitial and tissue cations and electrical potential after experimental spinal cord injury.
    Leybaert L; De Ley G
    Exp Brain Res; 1994; 100(3):369-75. PubMed ID: 7813675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of astrocytes in ionic and volume homeostasis in spinal cord during development and injury.
    Syková E; Svoboda J; Simonová Z; Jendelová P
    Prog Brain Res; 1992; 94():47-56. PubMed ID: 1283792
    [No Abstract]   [Full Text] [Related]  

  • 6. Finite element analysis of spinal cord injury in the rat.
    Maikos JT; Qian Z; Metaxas D; Shreiber DI
    J Neurotrauma; 2008 Jul; 25(7):795-816. PubMed ID: 18627257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution.
    Khan T; Myklebust J; Swiontek T; Sayers S; Dauzvardis M
    J Neurotrauma; 1994 Dec; 11(6):699-710. PubMed ID: 7723069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of L-type calcium channel alpha(1)-1.2 and alpha(1)-1.3 subunits on rat sacral motoneurons following chronic spinal cord injury.
    Anelli R; Sanelli L; Bennett DJ; Heckman CJ
    Neuroscience; 2007 Mar; 145(2):751-63. PubMed ID: 17291691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of extracellular calcium activity following contusion of the rat spinal cord.
    Moriya T; Hassan AZ; Young W; Chesler M
    J Neurotrauma; 1994 Jun; 11(3):255-63. PubMed ID: 7996580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of arterial blood gas values on lesion volumes in a graded rat spinal cord contusion model.
    Huang PP; Young W
    J Neurotrauma; 1994 Oct; 11(5):547-62. PubMed ID: 7861447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury.
    Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF
    J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevation and clearance of extracellular K+ following contusion of the rat spinal cord.
    Chesler M; Sakatani K; Hassan AZ
    Brain Res; 1991 Aug; 556(1):71-7. PubMed ID: 1933355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pain behaviors after spinal cord contusion injury in two commonly used mouse strains.
    Kerr BJ; David S
    Exp Neurol; 2007 Aug; 206(2):240-7. PubMed ID: 17586495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining neuroprotective agents: effect of riluzole and magnesium in a rat model of thoracic spinal cord injury.
    Vasconcelos NL; Gomes ED; Oliveira EP; Silva CJ; Lima R; Sousa N; Salgado AJ; Silva NA
    Spine J; 2016 Aug; 16(8):1015-24. PubMed ID: 27109831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spinal cord evoked potential in experimental spinal cord injury: the changes of spinal cord evoked potential following impact injury, and the correlation between the change in amplitude of the spinal cord evoked potential after injury and the prognosis for motor recovery of legs].
    Isu T; Iwasaki Y; Akino M; Abe H
    No Shinkei Geka; 1989 Jul; 17(7):629-34. PubMed ID: 2812263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal regeneration after acute spinal cord injury in adult rats.
    He B; Nan G
    Spine J; 2016 Dec; 16(12):1459-1467. PubMed ID: 27349629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticomotor and somatosensory evoked potential evaluation of acute spinal cord injury in the rat.
    Baskin DS; Simpson RK
    Neurosurgery; 1987 Jun; 20(6):871-7. PubMed ID: 3614567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats.
    Dong Y; Miao L; Hei L; Lin L; Ding H
    Int J Clin Exp Pathol; 2015; 8(12):15871-8. PubMed ID: 26884858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat.
    García-Alías G; López-Vales R; Forés J; Navarro X; Verdú E
    J Neurosci Res; 2004 Mar; 75(5):632-41. PubMed ID: 14991839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury.
    Popovich PG; Guan Z; Wei P; Huitinga I; van Rooijen N; Stokes BT
    Exp Neurol; 1999 Aug; 158(2):351-65. PubMed ID: 10415142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.