These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 24159851)
21. Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy. Jawaid S; Talpur FN; Sherazi ST; Nizamani SM; Khaskheli AA Food Chem; 2013 Dec; 141(3):3066-71. PubMed ID: 23871060 [TBL] [Abstract][Full Text] [Related]
22. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk. Yazgan NN; Genis HE; Bulat T; Topcu A; Durna S; Yetisemiyen A; Boyaci IH J Sci Food Agric; 2020 Oct; 100(13):4756-4765. PubMed ID: 32458436 [TBL] [Abstract][Full Text] [Related]
23. Simultaneous determination of urea and melamine in milk powder by nonlinear chemical fingerprint technique. Ma Y; Dong W; Bao H; Fang Y; Fan C Food Chem; 2017 Apr; 221():898-906. PubMed ID: 27979291 [TBL] [Abstract][Full Text] [Related]
24. Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least square regression model. Lim J; Kim G; Mo C; Kim MS; Chao K; Qin J; Fu X; Baek I; Cho BK Talanta; 2016 May; 151():183-191. PubMed ID: 26946026 [TBL] [Abstract][Full Text] [Related]
25. Effective detection and quantification of chemical adulterants in model fat-filled milk powders using NIRS and hierarchical modelling strategies. Kene Ejeahalaka K; On SLW Food Chem; 2020 Mar; 309():125785. PubMed ID: 31732247 [TBL] [Abstract][Full Text] [Related]
26. Temperature-perturbed two-dimensional generalized correlation characteristic slice spectra combined with multivariate method to identify adulterated milk. Huang MY; Long J; Wu HY; Yang RJ; Jin H; Yang YR Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122066. PubMed ID: 36371810 [TBL] [Abstract][Full Text] [Related]
27. [Determination of melamine in milk and milk-containing products by capillary zone electrophoresis]. Bogachuk MN; Perederiaev OI; Bessonov VV Vopr Pitan; 2010; 79(4):50-4. PubMed ID: 20968007 [TBL] [Abstract][Full Text] [Related]
28. Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder. Huang M; Kim MS; Chao K; Qin J; Mo C; Esquerre C; Delwiche S; Zhu Q Sensors (Basel); 2016 Mar; 16(4):441. PubMed ID: 27023555 [TBL] [Abstract][Full Text] [Related]
29. Colorimetric determination of melamine in milk using unmodified silver nanoparticles. Kumar N; Kumar H; Mann B; Seth R Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():89-97. PubMed ID: 26654965 [TBL] [Abstract][Full Text] [Related]
30. Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. Huang H; Li L; Zhou G; Liu Z; Ma Q; Feng Y; Zeng G; Tinnefeld P; He Z Talanta; 2011 Aug; 85(2):1013-9. PubMed ID: 21726732 [TBL] [Abstract][Full Text] [Related]
31. Preparation of monoclonal antibody for melamine and development of an indirect competitive ELISA for melamine detection in raw milk, milk powder, and animal feeds. Yin W; Liu J; Zhang T; Li W; Liu W; Meng M; He F; Wan Y; Feng C; Wang S; Lu X; Xi R J Agric Food Chem; 2010 Jul; 58(14):8152-7. PubMed ID: 20593820 [TBL] [Abstract][Full Text] [Related]
32. [Adulteration detection of urea in milk by mid-infrared spectroscopy]. Yang RJ; Liu R; Xu KX Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Sep; 31(9):2383-5. PubMed ID: 22097831 [TBL] [Abstract][Full Text] [Related]
33. Continuous temperature-dependent Raman spectroscopy of melamine and structural analog detection in milk powder. Schmidt WF; Broadhurst CL; Qin J; Lee H; Nguyen JK; Chao K; Hapeman CJ; Shelton DR; Kim MS Appl Spectrosc; 2015 Mar; 69(3):398-406. PubMed ID: 25664966 [TBL] [Abstract][Full Text] [Related]
34. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Haughey SA; Graham SF; Cancouët E; Elliott CT Food Chem; 2013 Feb; 136(3-4):1557-61. PubMed ID: 23194562 [TBL] [Abstract][Full Text] [Related]
35. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Santos PM; Pereira-Filho ER; Rodriguez-Saona LE Food Chem; 2013 May; 138(1):19-24. PubMed ID: 23265450 [TBL] [Abstract][Full Text] [Related]
36. Application of genetic algorithm and multivariate methods for the detection and measurement of milk-surfactant adulteration by attenuated total reflection and near-infrared spectroscopy. Hosseini E; Ghasemi JB; Daraei B; Asadi G; Adib N J Sci Food Agric; 2021 May; 101(7):2696-2703. PubMed ID: 33073373 [TBL] [Abstract][Full Text] [Related]
37. [Determination of melamine in milk and milk powder by high performance capillary electrophoresis]. Rao Q; Tong J; Guo P; Li H; Li X; Ding S Se Pu; 2008 Nov; 26(6):755-8. PubMed ID: 19253559 [TBL] [Abstract][Full Text] [Related]
38. Application of hand-held and portable infrared spectrometers in bovine milk analysis. Santos PM; Pereira-Filho ER; Rodriguez-Saona LE J Agric Food Chem; 2013 Feb; 61(6):1205-11. PubMed ID: 23339381 [TBL] [Abstract][Full Text] [Related]
39. Determination of melamine in different milk batches using a novel chemosensor based on the luminescence quenching of Ru(II) carbonyl complex. Attia MS; Bakir E; Abdel-aziz AA; Abdel-mottaleb MS Talanta; 2011 Mar; 84(1):27-33. PubMed ID: 21315893 [TBL] [Abstract][Full Text] [Related]
40. Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor. Mishra GK; Mishra RK; Bhand S Biosens Bioelectron; 2010 Dec; 26(4):1560-4. PubMed ID: 20732804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]