These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 24159930)

  • 1. New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass.
    Pardo I; Chanagá X; Vicente AI; Alcalde M; Camarero S
    BMC Biotechnol; 2013 Oct; 13():90. PubMed ID: 24159930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric High-Throughput Screening Assays for the Directed Evolution of Fungal Laccases.
    Pardo I; Camarero S
    Methods Mol Biol; 2018; 1685():247-254. PubMed ID: 29086313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Screening Assay for Laccase Engineering toward Lignosulfonate Valorization.
    Rodríguez-Escribano D; de Salas F; Pardo I; Camarero S
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28820431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases.
    Alcalde M; Bulter T; Arnold FH
    J Biomol Screen; 2002 Dec; 7(6):547-53. PubMed ID: 14599353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of chimeric laccases by directed evolution.
    Pardo I; Vicente AI; Mate DM; Alcalde M; Camarero S
    Biotechnol Bioeng; 2012 Dec; 109(12):2978-86. PubMed ID: 22729887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound.
    Li K; Xu F; Eriksson KE
    Appl Environ Microbiol; 1999 Jun; 65(6):2654-60. PubMed ID: 10347057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolved α-factor prepro-leaders for directed laccase evolution in Saccharomyces cerevisiae.
    Mateljak I; Tron T; Alcalde M
    Microb Biotechnol; 2017 Nov; 10(6):1830-1836. PubMed ID: 28805314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering platforms for directed evolution of Laccase from Pycnoporus cinnabarinus.
    Camarero S; Pardo I; Cañas AI; Molina P; Record E; Martínez AT; Martínez MJ; Alcalde M
    Appl Environ Microbiol; 2012 Mar; 78(5):1370-84. PubMed ID: 22210206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation.
    Lahtinen M; Kruus K; Heinonen P; Sipilä J
    J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent-A comparative study.
    Antošová Z; Herkommerová K; Pichová I; Sychrová H
    Biotechnol Prog; 2018 Jan; 34(1):69-80. PubMed ID: 28884503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes.
    Brissos V; Pereira L; Munteanu FD; Cavaco-Paulo A; Martins LO
    Biotechnol J; 2009 Apr; 4(4):558-63. PubMed ID: 19156728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccase activity measurement by FTIR spectral fingerprinting.
    Perna V; Baum A; Ernst HA; Agger JW; Meyer AS
    Enzyme Microb Technol; 2019 Mar; 122():64-73. PubMed ID: 30638509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications.
    Sitarz AK; Mikkelsen JD; Meyer AS
    Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of laccase-type multicopper oxidases involved in dye-decolorization by the fungus Leptosphaerulina sp.
    Copete LS; Chanagá X; Barriuso J; López-Lucendo MF; Martínez MJ; Camarero S
    BMC Biotechnol; 2015 Aug; 15():74. PubMed ID: 26268358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric assays for screening laccases.
    Alcalde M; Bulter T
    Methods Mol Biol; 2003; 230():193-201. PubMed ID: 12824583
    [No Abstract]   [Full Text] [Related]  

  • 17. Fungal Laccases: Fundamentals, Engineering and Classification Update.
    Aza P; Camarero S
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Engineering Approaches to Enhance Fungal Laccase Production in
    Aza P; de Salas F; Molpeceres G; Rodríguez-Escribano D; de la Fuente I; Camarero S
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33503813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes.
    Camarero S; Ibarra D; Martínez MJ; Martínez AT
    Appl Environ Microbiol; 2005 Apr; 71(4):1775-84. PubMed ID: 15812000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel starch-binding laccase from the wheat pathogen Zymoseptoria tritici highlights the functional diversity of ascomycete laccases.
    Haddad Momeni M; Bollella P; Ortiz R; Thormann E; Gorton L; Abou Hachem M
    BMC Biotechnol; 2019 Aug; 19(1):61. PubMed ID: 31426777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.