These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24160255)

  • 21. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks.
    Ishihama A
    FEMS Microbiol Rev; 2010 Sep; 34(5):628-45. PubMed ID: 20491932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstruction of Escherichia coli transcriptional regulatory networks via regulon-based associations.
    Zare H; Sangurdekar D; Srivastava P; Kaveh M; Khodursky A
    BMC Syst Biol; 2009 Apr; 3():39. PubMed ID: 19366454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DOOR: a prokaryotic operon database for genome analyses and functional inference.
    Cao H; Ma Q; Chen X; Xu Y
    Brief Bioinform; 2019 Jul; 20(4):1568-1577. PubMed ID: 28968679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypothesis-driven approach to predict transcriptional units from gene expression data.
    Steinhauser D; Junker BH; Luedemann A; Selbig J; Kopka J
    Bioinformatics; 2004 Aug; 20(12):1928-39. PubMed ID: 15044239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic arrangement of regulons in bacterial genomes.
    Zhang H; Yin Y; Olman V; Xu Y
    PLoS One; 2012; 7(1):e29496. PubMed ID: 22235300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prokaryotic genome regulation: a revolutionary paradigm.
    Ishihama A
    Proc Jpn Acad Ser B Phys Biol Sci; 2012; 88(9):485-508. PubMed ID: 23138451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dnd operon for DNA phosphorothioation modification system in Escherichia coli is located in diverse genomic islands.
    Ho WS; Ou HY; Yeo CC; Thong KL
    BMC Genomics; 2015 Mar; 16(1):199. PubMed ID: 25879448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the commonalities and differences in genomic organizations across closely related bacteria from an energy perspective.
    Ma Q; Chen X; Liu C; Mao X; Zhang H; Ji F; Wu C; Xu Y
    Sci China Life Sci; 2014 Nov; 57(11):1121-30. PubMed ID: 25234108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying promoter features of co-regulated genes with similar network motifs.
    Harari O; del Val C; Romero-Zaliz R; Shin D; Huang H; Groisman EA; Zwir I
    BMC Bioinformatics; 2009 Apr; 10 Suppl 4(Suppl 4):S1. PubMed ID: 19426448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli.
    Du X; Wojtowicz D; Bowers AA; Levens D; Benham CJ; Przytycka TM
    Nucleic Acids Res; 2013 Jul; 41(12):5965-77. PubMed ID: 23620297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Operon prediction by comparative genomics: an application to the Synechococcus sp. WH8102 genome.
    Chen X; Su Z; Dam P; Palenik B; Xu Y; Jiang T
    Nucleic Acids Res; 2004; 32(7):2147-57. PubMed ID: 15096577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A powerful non-homology method for the prediction of operons in prokaryotes.
    Moreno-Hagelsieb G; Collado-Vides J
    Bioinformatics; 2002; 18 Suppl 1():S329-36. PubMed ID: 12169563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli.
    Cho BK; Barrett CL; Knight EM; Park YS; Palsson BØ
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19462-7. PubMed ID: 19052235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context.
    Wolf YI; Rogozin IB; Kondrashov AS; Koonin EV
    Genome Res; 2001 Mar; 11(3):356-72. PubMed ID: 11230160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolvability and hierarchy in rewired bacterial gene networks.
    Isalan M; Lemerle C; Michalodimitrakis K; Horn C; Beltrao P; Raineri E; Garriga-Canut M; Serrano L
    Nature; 2008 Apr; 452(7189):840-5. PubMed ID: 18421347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models.
    Erdrich P; Steuer R; Klamt S
    BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operon conservation from the point of view of Escherichia coli, and inference of functional interdependence of gene products from genome context.
    Moreno-Hagelsieb G; Collado-Vides J
    In Silico Biol; 2002; 2(2):87-95. PubMed ID: 12066843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TRACTOR_DB: a database of regulatory networks in gamma-proteobacterial genomes.
    González AD; Espinosa V; Vasconcelos AT; Pérez-Rueda E; Collado-Vides J
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D98-102. PubMed ID: 15608293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of operons.
    Yan Y; Moult J
    Proteins; 2006 Aug; 64(3):615-28. PubMed ID: 16755590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks.
    Yan KK; Fang G; Bhardwaj N; Alexander RP; Gerstein M
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9186-91. PubMed ID: 20439753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.