These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 24160494)
21. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions. Athawale MV; Sarupria S; Garde S J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346 [TBL] [Abstract][Full Text] [Related]
22. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation. Goncalves PF; Stassen H J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041 [TBL] [Abstract][Full Text] [Related]
23. Contrasting nonaqueous against aqueous solvation on the basis of scaled-particle theory. Ashbaugh HS; Pratt LR J Phys Chem B; 2007 Aug; 111(31):9330-6. PubMed ID: 17636979 [TBL] [Abstract][Full Text] [Related]
24. A density-functional theory-based neural network potential for water clusters including van der Waals corrections. Morawietz T; Behler J J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541 [TBL] [Abstract][Full Text] [Related]
25. Classical density functional theory for the prediction of the surface tension and interfacial properties of fluids mixtures of chain molecules based on the statistical associating fluid theory for potentials of variable range. Llovell F; Galindo A; Blas FJ; Jackson G J Chem Phys; 2010 Jul; 133(2):024704. PubMed ID: 20632767 [TBL] [Abstract][Full Text] [Related]
26. Molecular density functional theory of solvation: from polar solvents to water. Zhao S; Ramirez R; Vuilleumier R; Borgis D J Chem Phys; 2011 May; 134(19):194102. PubMed ID: 21599039 [TBL] [Abstract][Full Text] [Related]
27. Computational assessment of the entropy of solvation of small-sized hydrophobic entities. Mahajan R; Kranzlmüller D; Volkert J; Hansmann UH; Höfinger S Phys Chem Chem Phys; 2006 Dec; 8(47):5515-21. PubMed ID: 17136266 [TBL] [Abstract][Full Text] [Related]
28. Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules. Kim SC; Kim EY; Seong BS J Chem Phys; 2011 Apr; 134(16):164701. PubMed ID: 21528975 [TBL] [Abstract][Full Text] [Related]
29. Solvation of a spherical cavity in simple liquids: interpolating between the limits. Wu J J Phys Chem B; 2009 May; 113(19):6813-8. PubMed ID: 19378961 [TBL] [Abstract][Full Text] [Related]
30. Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach. Husowitz B; Talanquer V J Chem Phys; 2007 Feb; 126(5):054508. PubMed ID: 17302486 [TBL] [Abstract][Full Text] [Related]
31. A classical density-functional theory for describing water interfaces. Hughes J; Krebs EJ; Roundy D J Chem Phys; 2013 Jan; 138(2):024509. PubMed ID: 23320706 [TBL] [Abstract][Full Text] [Related]
32. Heat capacity effects associated with the hydrophobic hydration and interaction of simple solutes: a detailed structural and energetical analysis based on molecular dynamics simulations. Paschek D J Chem Phys; 2004 Jun; 120(22):10605-17. PubMed ID: 15268086 [TBL] [Abstract][Full Text] [Related]
33. Simulations of solvation free energies and solubilities in supercritical solvents. Su Z; Maroncelli M J Chem Phys; 2006 Apr; 124(16):164506. PubMed ID: 16674145 [TBL] [Abstract][Full Text] [Related]
34. Theory for an order-driven disruption of the liquid state in water. England JL; Park S; Pande VS J Chem Phys; 2008 Jan; 128(4):044503. PubMed ID: 18247965 [TBL] [Abstract][Full Text] [Related]
35. Scalar fundamental measure theory for hard spheres in three dimensions: application to hydrophobic solvation. Levesque M; Vuilleumier R; Borgis D J Chem Phys; 2012 Jul; 137(3):034115. PubMed ID: 22830691 [TBL] [Abstract][Full Text] [Related]
36. Structures and correlation functions of multicomponent and polydisperse hard-sphere mixtures from a density functional theory. Yu YX; Wu J; Xin YX; Gao GH J Chem Phys; 2004 Jul; 121(3):1535-41. PubMed ID: 15260699 [TBL] [Abstract][Full Text] [Related]
37. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale. Leroy F; Müller-Plathe F Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209 [TBL] [Abstract][Full Text] [Related]
38. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins. Yamazaki T; Kovalenko A J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382 [TBL] [Abstract][Full Text] [Related]
39. Accurate prediction of hydration free energies and solvation structures using molecular density functional theory with a simple bridge functional. Borgis D; Luukkonen S; Belloni L; Jeanmairet G J Chem Phys; 2021 Jul; 155(2):024117. PubMed ID: 34266282 [TBL] [Abstract][Full Text] [Related]
40. Assessing the accuracy of integral equation theories for nano-sized hydrophobic solutes in water. Fujita T; Yamamoto T J Chem Phys; 2017 Jul; 147(1):014110. PubMed ID: 28688395 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]