These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24160496)

  • 1. State-averaged Monte Carlo configuration interaction applied to electronically excited states.
    Coe JP; Paterson MJ
    J Chem Phys; 2013 Oct; 139(15):154103. PubMed ID: 24160496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities.
    Coe JP; Taylor DJ; Paterson MJ
    J Comput Chem; 2013 May; 34(13):1083-93. PubMed ID: 23335248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Monte Carlo configuration interaction: natural orbitals and second-order perturbation theory.
    Coe JP; Paterson MJ
    J Chem Phys; 2012 Nov; 137(20):204108. PubMed ID: 23205982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations of potential energy surfaces using Monte Carlo configuration interaction.
    Coe JP; Taylor DJ; Paterson MJ
    J Chem Phys; 2012 Nov; 137(19):194111. PubMed ID: 23181298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic construction of configuration interaction wavefunctions in the complete CI space.
    Prentice AW; Coe JP; Paterson MJ
    J Chem Phys; 2019 Oct; 151(16):164112. PubMed ID: 31675885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full configuration interaction calculation of singlet excited states of Be3.
    Junquera-Hernández JM; Sánchez-Marín J; Bendazzoli GL; Evangelisti S
    J Chem Phys; 2004 Oct; 121(15):7103-9. PubMed ID: 15473776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarks for Electronically Excited States with CASSCF Methods.
    Helmich-Paris B
    J Chem Theory Comput; 2019 Jul; 15(7):4170-4179. PubMed ID: 31136706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states.
    Shu Y; Hohenstein EG; Levine BG
    J Chem Phys; 2015 Jan; 142(2):024102. PubMed ID: 25591333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach.
    Casanova D
    J Chem Phys; 2012 Aug; 137(8):084105. PubMed ID: 22938216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo configuration interaction with perturbation corrections for dissociation energies of first row diatomic molecules: C2, N2, O2, CO, and NO.
    Kelly TP; Perera A; Bartlett RJ; Greer JC
    J Chem Phys; 2014 Feb; 140(8):084114. PubMed ID: 24588155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicitly correlated multireference configuration interaction with multiple reference functions: avoided crossings and conical intersections.
    Shiozaki T; Werner HJ
    J Chem Phys; 2011 May; 134(18):184104. PubMed ID: 21568494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking Coupled Cluster Methods on Valence Singlet Excited States.
    Kánnár D; Szalay PG
    J Chem Theory Comput; 2014 Sep; 10(9):3757-65. PubMed ID: 26588520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations.
    Filatov M; Huix-Rotllant M; Burghardt I
    J Chem Phys; 2015 May; 142(18):184104. PubMed ID: 25978880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density matrices in full configuration interaction quantum Monte Carlo: Excited states, transition dipole moments, and parallel distribution.
    Blunt NS; Booth GH; Alavi A
    J Chem Phys; 2017 Jun; 146(24):244105. PubMed ID: 28668027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer.
    Sharma S; Yanai T; Booth GH; Umrigar CJ; Chan GK
    J Chem Phys; 2014 Mar; 140(10):104112. PubMed ID: 24628157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2).
    Levine BG; Coe JD; Martínez TJ
    J Phys Chem B; 2008 Jan; 112(2):405-13. PubMed ID: 18081339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved results for the excited states of nitric oxide, including the B/C avoided crossing.
    Shi H; East AL
    J Chem Phys; 2006 Sep; 125(10):104311. PubMed ID: 16999530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurately solving the electronic Schrodinger equation of small atoms and molecules using explicitly correlated (r12-)MR-CI. VIII. Valence excited states of methylene (CH2).
    Flores JR; Gdanitz RJ
    J Chem Phys; 2005 Oct; 123(14):144316. PubMed ID: 16238400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediate state representation approach to physical properties of electronically excited molecules.
    Schirmer J; Trofimov AB
    J Chem Phys; 2004 Jun; 120(24):11449-64. PubMed ID: 15268179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction.
    Coe JP; Paterson MJ
    J Chem Phys; 2014 Sep; 141(12):124118. PubMed ID: 25273423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.