These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24160497)

  • 1. A multi-state fragment charge difference approach for diabatic states in electron transfer: extension and automation.
    Yang CH; Hsu CP
    J Chem Phys; 2013 Oct; 139(15):154104. PubMed ID: 24160497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electronic couplings in electron transfer and excitation energy transfer.
    Hsu CP
    Acc Chem Res; 2009 Apr; 42(4):509-18. PubMed ID: 19215069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic couplings and rates of excited state charge transfer processes at poly(thiophene-co-quinoxaline)-PC
    Kastinen T; da Silva Filho DA; Paunonen L; Linares M; Ribeiro Junior LA; Cramariuc O; Hukka TI
    Phys Chem Chem Phys; 2019 Nov; 21(46):25606-25625. PubMed ID: 31720607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization.
    Subotnik JE; Yeganeh S; Cave RJ; Ratner MA
    J Chem Phys; 2008 Dec; 129(24):244101. PubMed ID: 19123489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dications of bis-triarylamino-[2.2]paracyclophanes: Evaluation of excited state couplings by GMH analysis.
    Amthor S; Lambert C
    J Phys Chem A; 2006 Mar; 110(10):3495-504. PubMed ID: 16526628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio characterization of electron transfer coupling in photoinduced systems: generalized Mulliken-Hush with configuration-interaction singles.
    Chen HC; Hsu CP
    J Phys Chem A; 2005 Dec; 109(51):11989-95. PubMed ID: 16366653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced electronic spaces for modeling donor/acceptor interactions.
    Cave RJ; Edwards ST; Kouzelos JA; Newton MD
    J Phys Chem B; 2010 Nov; 114(45):14631-41. PubMed ID: 21070059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MS-CASPT2 study of hole transfer in guanine-indole complexes using the generalized Mulliken-Hush method: effective two-state treatment.
    Butchosa C; Simon S; Blancafort L; Voityuk A
    J Phys Chem B; 2012 Jul; 116(27):7815-20. PubMed ID: 22702242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical investigation of charge transfer in several substituted acridinium ions.
    Lappe J; Cave RJ; Newton MD; Rostov IV
    J Phys Chem B; 2005 Apr; 109(14):6610-9. PubMed ID: 16851742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimates of electronic coupling for excess electron transfer in DNA.
    Voityuk AA
    J Chem Phys; 2005 Jul; 123(3):34903. PubMed ID: 16080759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabatization Schemes for Generating Charge-Localized Electron-Proton Vibronic States in Proton-Coupled Electron Transfer Systems.
    Sirjoosingh A; Hammes-Schiffer S
    J Chem Theory Comput; 2011 Sep; 7(9):2831-41. PubMed ID: 26605474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fragment spin difference scheme for triplet-triplet energy transfer coupling.
    You ZQ; Hsu CP
    J Chem Phys; 2010 Aug; 133(7):074105. PubMed ID: 20726633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic coupling for charge transfer in donor-bridge-acceptor systems. Performance of the two-state FCD model.
    Voityuk AA
    Phys Chem Chem Phys; 2012 Oct; 14(40):13789-93. PubMed ID: 22513425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principle Characterization for Singlet Fission Couplings.
    Yang CH; Hsu CP
    J Phys Chem Lett; 2015 May; 6(10):1925-9. PubMed ID: 26263271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational construction of the electronic Hamiltonian for photoinduced electron transfer and Redfield propagation.
    Storm FE; Rasmussen MH; Mikkelsen KV; Hansen T
    Phys Chem Chem Phys; 2019 Aug; 21(31):17366-17377. PubMed ID: 31355839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended Mulliken-Hush Method with Applications to the Theoretical Study of Electron Transfer.
    Ren M; Zhang L; Jiao Y; Chen Z; Wu W
    J Chem Theory Comput; 2021 Nov; 17(11):6861-6875. PubMed ID: 34605634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: an MS-CASPT2 study.
    Blancafort L; Voityuk AA
    J Chem Phys; 2014 Mar; 140(9):095102. PubMed ID: 24606381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hamiltonian-Independent Generalization of the Fragment Excitation Difference Scheme.
    Kue KY; Claudio GC; Hsu CP
    J Chem Theory Comput; 2018 Mar; 14(3):1304-1310. PubMed ID: 29357258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single surface beyond Born-Oppenheimer equation for a three-state model Hamiltonian of Na3 cluster.
    Kumar Paul A; Sardar S; Sarkar B; Adhikari S
    J Chem Phys; 2009 Sep; 131(12):124312. PubMed ID: 19791886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform potential difference scheme to evaluate effective electronic couplings for superexchange electron transfer in donor-bridge-acceptor systems.
    Nakano H; Higashi M; Sato H
    J Chem Phys; 2020 Jun; 152(22):224103. PubMed ID: 32534534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.