These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 24160586)

  • 1. Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse.
    Reisswig C; Ott CD; Abdikamalov E; Haas R; Mösta P; Schnetter E
    Phys Rev Lett; 2013 Oct; 111(15):151101. PubMed ID: 24160586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetorotational collapse of supermassive stars: Black hole formation, gravitational waves, and jets.
    Sun L; Paschalidis V; Ruiz M; Shapiro SL
    Phys Rev D; 2017 Aug; 96(4):. PubMed ID: 30038964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravitational waves from disks around spinning black holes: Simulations in full general relativity.
    Wessel E; Paschalidis V; Tsokaros A; Ruiz M; Shapiro SL
    Phys Rev D; 2021 Feb; 103(4):. PubMed ID: 34595363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximally rotating supermassive stars at the onset of collapse: the perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy.
    Butler SP; Lima AR; Baumgarte TW; Shapiro SL
    Mon Not R Astron Soc; 2018 Jul; 477(3):3694-3710. PubMed ID: 30008487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The route to massive black hole formation via merger-driven direct collapse: a review.
    Mayer L; Bonoli S
    Rep Prog Phys; 2019 Jan; 82(1):016901. PubMed ID: 30057369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares.
    Hayasaki K; Loeb A
    Sci Rep; 2016 Oct; 6():35629. PubMed ID: 27767188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.
    Luo Y; Nagamine K; Shlosman I
    Mon Not R Astron Soc; 2016 Jul; 459(3):3217-3233. PubMed ID: 27279786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles.
    Sun L; Ruiz M; Shapiro SL
    Phys Rev D; 2018 Nov; 98(10):. PubMed ID: 34589637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers.
    Mayer L; Kazantzidis S; Escala A; Callegari S
    Nature; 2010 Aug; 466(7310):1082-4. PubMed ID: 20740009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic reverberation in the accretion flow of a tidal disruption event.
    Kara E; Miller JM; Reynolds C; Dai L
    Nature; 2016 Jul; 535(7612):388-90. PubMed ID: 27338795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of supermassive black holes through fragmentation of torodial supermassive stars.
    Zink B; Stergioulas N; Hawke I; Ott CD; Schnetter E; Müller E
    Phys Rev Lett; 2006 Apr; 96(16):161101. PubMed ID: 16712210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid growth of seed black holes in the early universe by supra-exponential accretion.
    Alexander T; Natarajan P
    Science; 2014 Sep; 345(6202):1330-3. PubMed ID: 25103410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes.
    Kocsis B; Loeb A
    Phys Rev Lett; 2008 Jul; 101(4):041101. PubMed ID: 18764315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravitational waves from the Papaloizou-Pringle instability in black-hole-torus systems.
    Kiuchi K; Shibata M; Montero PJ; Font JA
    Phys Rev Lett; 2011 Jun; 106(25):251102. PubMed ID: 21770625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic dynamics and extreme mass ratio inspirals.
    Amaro-Seoane P
    Living Rev Relativ; 2018; 21(1):4. PubMed ID: 29780279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnification of light from many distant quasars by gravitational lenses.
    Wyithe JS; Loeb A
    Nature; 2002 Jun; 417(6892):923-5. PubMed ID: 12087397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of massive black holes in rapidly growing pre-galactic gas clouds.
    Wise JH; Regan JA; O'Shea BW; Norman ML; Downes TP; Xu H
    Nature; 2019 Feb; 566(7742):85-88. PubMed ID: 30675066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supersonic gas streams enhance the formation of massive black holes in the early universe.
    Hirano S; Hosokawa T; Yoshida N; Kuiper R
    Science; 2017 Sep; 357(6358):1375-1378. PubMed ID: 28963249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Black-hole bombs and photon-mass bounds.
    Pani P; Cardoso V; Gualtieri L; Berti E; Ishibashi A
    Phys Rev Lett; 2012 Sep; 109(13):131102. PubMed ID: 23030079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detectability of Gravitational Waves from High-Redshift Binaries.
    Rosado PA; Lasky PD; Thrane E; Zhu X; Mandel I; Sesana A
    Phys Rev Lett; 2016 Mar; 116(10):101102. PubMed ID: 27015470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.