These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24160773)

  • 21. A new multiresponsive drug delivery system using smart nanogels.
    Demirel GB; von Klitzing R
    Chemphyschem; 2013 Aug; 14(12):2833-40. PubMed ID: 23794381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.
    El Miri N; Abdelouahdi K; Barakat A; Zahouily M; Fihri A; Solhy A; El Achaby M
    Carbohydr Polym; 2015 Sep; 129():156-67. PubMed ID: 26050901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Starch/microcrystalline cellulose hybrid gels as gastric-floating drug delivery systems.
    Xu J; Tan X; Chen L; Li X; Xie F
    Carbohydr Polym; 2019 Jul; 215():151-159. PubMed ID: 30981340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose.
    Chen YC; Ho HO; Liu DZ; Siow WS; Sheu MT
    PLoS One; 2015; 10(1):e0116914. PubMed ID: 25617891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oral suspensions of morphine hydrochloride for controlled release: rheological properties and drug release.
    Morales ME; López G; Gallardo V; Ruiz MA
    Mol Pharm; 2011 Apr; 8(2):629-34. PubMed ID: 21271730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oscillatory rheology of carboxymethyl cellulose gels: Influence of concentration and pH.
    Lopez CG; Richtering W
    Carbohydr Polym; 2021 Sep; 267():118117. PubMed ID: 34119123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug release and washability of mucoadhesive gels based on sodium carboxymethylcellulose and polyacrylic acid.
    Rossi S; Bonferoni MC; Ferrari F; Caramella C
    Pharm Dev Technol; 1999 Jan; 4(1):55-63. PubMed ID: 10027213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: preparation, rheological, textural, mucoadhesive and release properties.
    Karavana SY; Güneri P; Ertan G
    Pharm Dev Technol; 2009; 14(6):623-31. PubMed ID: 19883251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods.
    Boluk Y; Zhao L; Incani V
    Langmuir; 2012 Apr; 28(14):6114-23. PubMed ID: 22448630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release.
    Wang H; Yi J; Mukherjee S; Banerjee P; Zhou S
    Nanoscale; 2014 Nov; 6(21):13001-11. PubMed ID: 25243783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and evaluation of a dry coated drug delivery system with an impermeable cup, swellable top layer and pulsatile release.
    Efentakis M; Koligliati S; Vlachou M
    Int J Pharm; 2006 Mar; 311(1-2):147-56. PubMed ID: 16436321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thixotropy of different concentrations of microcrystalline cellulose:sodium carboxymethyl cellulose gels.
    Dolz-Planas M; Roldan-Garcia C; Herraez-Dominguez JV; Belda-Maximino R
    J Pharm Sci; 1991 Jan; 80(1):75-9. PubMed ID: 2013855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of water-soluble mucoadhesive gels for the intravesical delivery of epirubicin to the bladder for the treatment of non-muscle-invasive bladder cancer.
    Chatta D; Cottrell L; Burnett B; Laverty G; McConville C
    J Pharm Pharmacol; 2015 Oct; 67(10):1355-62. PubMed ID: 26076758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase behavior, rheological and mechanical properties of hydrophilic polymer dispersions.
    Bhattarai S; Bunt C; Rathbone M; Alany RG
    Pharm Dev Technol; 2011 Jun; 16(3):259-68. PubMed ID: 20230192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow and Thixotropic Parameters for Rheological Characterization of Hydrogels.
    Ghica MV; Hîrjău M; Lupuleasa D; Dinu-Pîrvu CE
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan and a modified chitosan as agents to improve performances of mucoadhesive vaginal gels.
    Perioli L; Ambrogi V; Venezia L; Pagano C; Ricci M; Rossi C
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):141-5. PubMed ID: 18621512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study of the utility of two superdisintegrants in microcrystalline cellulose pellets prepared by extrusion-spheronization.
    Souto C; Rodríguez A; Parajes S; Martínez-Pacheco R
    Eur J Pharm Biopharm; 2005 Sep; 61(1-2):94-9. PubMed ID: 15967651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Textural analysis and flow rheometry of novel, bioadhesive antimicrobial oral gels.
    Jones DS; Woolfson AD; Brown AF
    Pharm Res; 1997 Apr; 14(4):450-7. PubMed ID: 9144730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.