BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24161153)

  • 1. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli.
    Zarschler K; Witecy S; Kapplusch F; Foerster C; Stephan H
    Microb Cell Fact; 2013 Oct; 12():97. PubMed ID: 24161153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Single-Domain Antibodies in Pichia pastoris.
    Matsuzaki Y; Kajiwara K; Aoki W; Ueda M
    Methods Mol Biol; 2022; 2446():181-203. PubMed ID: 35157274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative tail fusions can improve ruggedness of single domain antibodies.
    Goldman ER; Brozozog-Lee PA; Zabetakis D; Turner KB; Walper SA; Liu JL; Anderson GP
    Protein Expr Purif; 2014 Mar; 95():226-32. PubMed ID: 24440507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of single-domain antibody multimers with three different self-associating peptides.
    Wang L; Liu X; Zhu X; Wang L; Wang W; Liu C; Cui H; Sun M; Gao B
    Protein Eng Des Sel; 2013 Jun; 26(6):417-23. PubMed ID: 23538432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection, characterization, and thermal stabilization of llama single domain antibodies towards Ebola virus glycoprotein.
    Liu JL; Shriver-Lake LC; Anderson GP; Zabetakis D; Goldman ER
    Microb Cell Fact; 2017 Dec; 16(1):223. PubMed ID: 29233140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody.
    Zabetakis D; Anderson GP; Bayya N; Goldman ER
    PLoS One; 2013; 8(10):e77678. PubMed ID: 24143255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of single-domain antibodies in bacterial systems.
    Baral TN; Arbabi-Ghahroudi M
    Methods Mol Biol; 2012; 911():257-75. PubMed ID: 22886257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of the reductase deficient Escherichia coli on the solubility of recombinant proteins produced in it].
    Xiong S; Zhang MY; Qian CW; Ran YC; Wang YF; Ren XR; Su KY; Yu ZY
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):686-91. PubMed ID: 15971580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong and oriented immobilization of single domain antibodies from crude bacterial lysates for high-throughput compatible cost-effective antibody array generation.
    Even-Desrumeaux K; Baty D; Chames P
    Mol Biosyst; 2010 Nov; 6(11):2241-8. PubMed ID: 20859568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein.
    Salema V; Fernández LÁ
    Protein Expr Purif; 2013 Sep; 91(1):42-8. PubMed ID: 23856605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of single domain antibodies from immune libraries displayed on the surface of E. coli cells with two β-domains of opposite topologies.
    Salema V; Marín E; Martínez-Arteaga R; Ruano-Gallego D; Fraile S; Margolles Y; Teira X; Gutierrez C; Bodelón G; Fernández LÁ
    PLoS One; 2013; 8(9):e75126. PubMed ID: 24086454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct injection of functional single-domain antibodies from E. coli into human cells.
    Blanco-Toribio A; Muyldermans S; Frankel G; Fernández LÁ
    PLoS One; 2010 Dec; 5(12):e15227. PubMed ID: 21170340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the targeting of therapeutics with single-domain antibodies.
    Turner KB; Alves NJ; Medintz IL; Walper SA
    Expert Opin Drug Deliv; 2016; 13(4):561-70. PubMed ID: 26689649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data on enhanced expression and purification of camelid single domain antibodies from
    Maggi M; Scotti C
    Data Brief; 2017 Jun; 12():132-137. PubMed ID: 28413818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli.
    Gaciarz A; Veijola J; Uchida Y; Saaranen MJ; Wang C; Hörkkö S; Ruddock LW
    Microb Cell Fact; 2016 Jan; 15():22. PubMed ID: 26809624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its "oxidizing" mutant.
    Xiong S; Wang YF; Ren XR; Li B; Zhang MY; Luo Y; Zhang L; Xie QL; Su KY
    World J Gastroenterol; 2005 Feb; 11(7):1077-82. PubMed ID: 15742420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies.
    Bach H; Mazor Y; Shaky S; Shoham-Lev A; Berdichevsky Y; Gutnick DL; Benhar I
    J Mol Biol; 2001 Sep; 312(1):79-93. PubMed ID: 11545587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond.
    Liu JL; Goldman ER; Zabetakis D; Walper SA; Turner KB; Shriver-Lake LC; Anderson GP
    Microb Cell Fact; 2015 Oct; 14():158. PubMed ID: 26449768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of phage-displayed synthetic human single-domain antibody libraries: A retrospective analysis.
    Henry KA; Tanha J
    J Immunol Methods; 2018 May; 456():81-86. PubMed ID: 29462605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment.
    Iezzi ME; Policastro L; Werbajh S; Podhajcer O; Canziani GA
    Front Immunol; 2018; 9():273. PubMed ID: 29520274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.