BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 24161283)

  • 1. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders.
    Charrier V; Cabelguen JM
    Neuroscience; 2013; 255():191-202. PubMed ID: 24161283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility of the axial central pattern generator network for locomotion in the salamander.
    Ryczko D; Knüsel J; Crespi A; Lamarque S; Mathou A; Ijspeert AJ; Cabelguen JM
    J Neurophysiol; 2015 Mar; 113(6):1921-40. PubMed ID: 25540227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms.
    Ryczko D; Charrier V; Ijspeert A; Cabelguen JM
    J Neurophysiol; 2010 Nov; 104(5):2677-92. PubMed ID: 20810687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling.
    Chevallier S; Jan Ijspeert A; Ryczko D; Nagy F; Cabelguen JM
    Brain Res Rev; 2008 Jan; 57(1):147-61. PubMed ID: 17920689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander.
    Bicanski A; Ryczko D; Cabelguen JM; Ijspeert AJ
    Biol Cybern; 2013 Oct; 107(5):565-87. PubMed ID: 23463500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord.
    Pujala A; Blivis D; O'Donovan MJ
    eNeuro; 2016; 3(3):. PubMed ID: 27419215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the Dynamic Recruitment of Spinal Neurons during Fictive Locomotion.
    Rancic V; Ballanyi K; Gosgnach S
    J Neurosci; 2020 Dec; 40(50):9692-9700. PubMed ID: 33188068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat.
    Falgairolle M; Cazalets JR
    J Physiol; 2007 Apr; 580(Pt 1):87-102. PubMed ID: 17185345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of the electrical oscillations evoked by 4-aminopyridine on dorsal root fibers and their relation to fictive locomotor patterns in the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2005; 132(4):1187-97. PubMed ID: 15857720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new model of the spinal locomotor networks of a salamander and its properties.
    Liu Q; Yang H; Zhang J; Wang J
    Biol Cybern; 2018 Aug; 112(4):369-385. PubMed ID: 29790009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics.
    Bicanski A; Ryczko D; Knuesel J; Harischandra N; Charrier V; Ekeberg Ö; Cabelguen JM; Ijspeert AJ
    Biol Cybern; 2013 Oct; 107(5):545-64. PubMed ID: 23430277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor central pattern generator excitability states and serotonin sensitivity after spontaneous recovery from a neonatal lumbar spinal cord injury.
    Kondratskaya E; Ievglevskyi O; Züchner M; Samara A; Glover JC; Boulland JL
    Brain Res; 2019 Apr; 1708():10-19. PubMed ID: 30521786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii.
    Chevallier S; Landry M; Nagy F; Cabelguen JM
    Eur J Neurosci; 2004 Oct; 20(8):1995-2007. PubMed ID: 15450078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.