BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

679 related articles for article (PubMed ID: 24161399)

  • 1. Bone conduction in Thiel-embalmed cadaver heads.
    Guignard J; Stieger C; Kompis M; Caversaccio M; Arnold A
    Hear Res; 2013 Dec; 306():115-22. PubMed ID: 24161399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser Doppler vibrometric assessment of middle ear motion in Thiel-embalmed heads.
    Stieger C; Candreia C; Kompis M; Herrmann G; Pfiffner F; Widmer D; Arnold A
    Otol Neurotol; 2012 Apr; 33(3):311-8. PubMed ID: 22377645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of freezing and embalming of human cadaveric whole head specimens on bone conduction.
    Graf L; Arnold A; Blache S; Honegger F; Müller-Gerbl M; Stieger C
    Hear Res; 2023 Mar; 429():108700. PubMed ID: 36680872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Round window and promontory movements during bone conduction with different middle ear conditions in Thiel embalmed specimens.
    Stieger C; Kompis M; Caversaccio M; Guignard J; Arnold A
    Acta Otolaryngol; 2019 Apr; 139(4):351-356. PubMed ID: 30987498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of conservation method on ear mechanics for the same specimen.
    Graf L; Arnold A; Roushan K; Honegger F; Müller-Gerbl M; Stieger C
    Hear Res; 2021 Mar; 401():108152. PubMed ID: 33388646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of the effect of middle ear in bone conduction.
    Dobrev I; Farahmandi TS; Röösli C
    Hear Res; 2020 Sep; 395():108041. PubMed ID: 32810722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of promontory motion and intracranial pressure following bone conduction: Stimulation site and coupling type dependence.
    Dobrev I; Sim JH; Pfiffner F; Huber AM; Röösli C
    Hear Res; 2019 Jul; 378():108-125. PubMed ID: 30885510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Round window membrane motion with air conduction and bone conduction stimulation.
    Stenfelt S; Hato N; Goode RL
    Hear Res; 2004 Dec; 198(1-2):10-24. PubMed ID: 15567598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Round Window Membrane Motion Induced by Bone Conduction Stimulation at Different Excitation Sites: Methodology of Measurement and Data Analysis in Cadaver Study.
    Kwacz M; Niemczyk K; Wysocki J; Lachowska M; Borkowski P; Małkowska M; Sokołowski J
    Ear Hear; 2019; 40(6):1437-1444. PubMed ID: 31033633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforced active middle ear implant fixation in incus vibroplasty.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Hagen R; Gummer AW; Schraven SP
    Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of a novel piezoelectric subcutaneous bone conduction device.
    Dobrev I; Sim JH; Pfiffner F; Huber AM; Röösli C
    Hear Res; 2018 Dec; 370():94-104. PubMed ID: 30343248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Round Window Occlusion Affects Bone Conduction in Cadaver Heads.
    Chen K; Lyu H; Yin D; Yang L; Zhang T; Dai P
    Otol Neurotol; 2018 Aug; 39(7):e513-e517. PubMed ID: 29995003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The floating mass transducer at the round window: direct transmission or bone conduction?
    Arnold A; Kompis M; Candreia C; Pfiffner F; Häusler R; Stieger C
    Hear Res; 2010 May; 263(1-2):120-7. PubMed ID: 20005939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of the relative vibration of the round window membrane after implantation of a direct acoustic cochlear implant.
    D'hondt C; Wouters J; Verhaert N
    Int J Audiol; 2020 May; 59(5):341-347. PubMed ID: 31860369
    [No Abstract]   [Full Text] [Related]  

  • 18. Transmission of bone-conducted sound in the human skull measured by cochlear vibrations.
    Eeg-Olofsson M; Stenfelt S; Tjellström A; Granström G
    Int J Audiol; 2008 Dec; 47(12):761-9. PubMed ID: 19085400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcutaneous and percutaneous bone conduction sound propagation in single-sided deaf patients and cadaveric heads.
    Beros S; Dobrev I; Farahmandi TS; Veraguth D; Huber AM; Röösli C
    Int J Audiol; 2022 Aug; 61(8):678-685. PubMed ID: 34097554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.