These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 24161399)

  • 41. Objective assessment of stapedotomy surgery from round window motion measurement.
    Sim JH; Chatzimichalis M; Röösli C; Laske RD; Huber AM
    Ear Hear; 2012; 33(5):e24-31. PubMed ID: 22699658
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Feasibility of direct promontory stimulation by bone conduction: A preliminary study of frequency-response characteristics in cats.
    Shi YX; Ren LJ; Yang L; Zhang TY; Xie YZ; Dai PD
    Hear Res; 2019 Jul; 378():101-107. PubMed ID: 30773325
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transmission properties of bone conducted sound: measurements in cadaver heads.
    Stenfelt S; Goode RL
    J Acoust Soc Am; 2005 Oct; 118(4):2373-91. PubMed ID: 16266160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intracochlear pressure and temporal bone motion interaction under bone conduction stimulation.
    Dobrev I; Pfiffner F; Röösli C
    Hear Res; 2023 Aug; 435():108818. PubMed ID: 37267833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct Acoustic Stimulation at the Lateral Canal: An Alternative Route to the Inner Ear?
    Verhaert N; Walraevens J; Desloovere C; Wouters J; Gérard JM
    PLoS One; 2016; 11(8):e0160819. PubMed ID: 27500399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effectiveness of Bone Conduction Stimulation Applied Directly to the Otic Capsule Measured at Promontory: Assessment in Cadavers.
    Niemczyk K; Lachowska M; Kwacz M; Wysocki J; Borkowski P; Małkowska M; Sokołowski J
    Audiol Neurootol; 2020; 25(3):143-150. PubMed ID: 32007994
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation.
    Lupo JE; Koka K; Holland NJ; Jenkins HA; Tollin DJ
    Otol Neurotol; 2009 Dec; 30(8):1215-24. PubMed ID: 19779388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Round window membrane motion before and after stapedotomy surgery - an experimental study.
    Kwacz M; Mrowka M; Wysocki J
    Acta Bioeng Biomech; 2011; 13(3):27-33. PubMed ID: 22098054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Round window stimulation with the floating mass transducer at constant pretension.
    Salcher R; Schwab B; Lenarz T; Maier H
    Hear Res; 2014 Aug; 314():1-9. PubMed ID: 24727490
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone conduction activation through soft tissues following complete immobilization of the ossicular chain, stapes footplate and round window.
    Perez R; Adelman C; Sohmer H
    Hear Res; 2011 Oct; 280(1-2):82-5. PubMed ID: 21569827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
    Chhan D; Bowers P; McKinnon ML; Rosowski JJ
    Hear Res; 2016 Oct; 340():144-152. PubMed ID: 26923425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of a cochlear implant electrode on the mechanical function of the inner ear.
    Huber AM; Hoon SJ; Sharouz B; Daniel B; Albrecht E
    Otol Neurotol; 2010 Apr; 31(3):512-8. PubMed ID: 20061991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sound pressure gain produced by the human middle ear.
    Kurokawa H; Goode RL
    Otolaryngol Head Neck Surg; 1995 Oct; 113(4):349-55. PubMed ID: 7567003
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vibration direction sensitivity of the cochlea with bone conduction stimulation in guinea pigs.
    Zhao M; Fridberger A; Stenfelt S
    Sci Rep; 2021 Feb; 11(1):2855. PubMed ID: 33536482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Factors improving the vibration transfer of the floating mass transducer at the round window.
    Arnold A; Stieger C; Candreia C; Pfiffner F; Kompis M
    Otol Neurotol; 2010 Jan; 31(1):122-8. PubMed ID: 19887971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Preliminary Investigation of the Air-Bone Gap: Changes in Intracochlear Sound Pressure With Air- and Bone-conducted Stimuli After Cochlear Implantation.
    Banakis Hartl RM; Mattingly JK; Greene NT; Jenkins HA; Cass SP; Tollin DJ
    Otol Neurotol; 2016 Oct; 37(9):1291-9. PubMed ID: 27579835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction between osseous and non-osseous vibratory stimulation of the human cadaveric head.
    Sim JH; Dobrev I; Gerig R; Pfiffner F; Stenfelt S; Huber AM; Röösli C
    Hear Res; 2016 Oct; 340():153-160. PubMed ID: 26807795
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.