BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1254 related articles for article (PubMed ID: 24161427)

  • 1. High-grade glioma radiation therapy target volumes and patterns of failure obtained from magnetic resonance imaging and 18F-FDOPA positron emission tomography delineations from multiple observers.
    Kosztyla R; Chan EK; Hsu F; Wilson D; Ma R; Cheung A; Zhang S; Moiseenko V; Benard F; Nichol A
    Int J Radiat Oncol Biol Phys; 2013 Dec; 87(5):1100-6. PubMed ID: 24161427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy.
    Grosu AL; Weber WA; Franz M; Stärk S; Piert M; Thamm R; Gumprecht H; Schwaiger M; Molls M; Nieder C
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):511-9. PubMed ID: 16168843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.
    Rieken S; Habermehl D; Giesel FL; Hoffmann C; Burger U; Rief H; Welzel T; Haberkorn U; Debus J; Combs SE
    Radiother Oncol; 2013 Dec; 109(3):487-92. PubMed ID: 23953407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation treatment planning in brain tumours: potential impact of 3-O-methyl-6-[(18)F]fluoro-L-DOPA and PET.
    Alheit H; Oehme L; Winkler C; Füchtner F; Hoepping A; Grabowski J; Kotzerke J; Beuthien-Baumann B
    Nuklearmedizin; 2008; 47(5):200-4. PubMed ID: 18852926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas.
    Fueger BJ; Czernin J; Cloughesy T; Silverman DH; Geist CL; Walter MA; Schiepers C; Nghiemphu P; Lai A; Phelps ME; Chen W
    J Nucl Med; 2010 Oct; 51(10):1532-8. PubMed ID: 20847166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning.
    Matsuo M; Miwa K; Tanaka O; Shinoda J; Nishibori H; Tsuge Y; Yano H; Iwama T; Hayashi S; Hoshi H; Yamada J; Kanematsu M; Aoyama H
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):83-9. PubMed ID: 21095072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrence pattern after [(18)F]fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma: a prospective study.
    Weber DC; Casanova N; Zilli T; Buchegger F; Rouzaud M; Nouet P; Vees H; Ratib O; Dipasquale G; Miralbell R
    Radiother Oncol; 2009 Dec; 93(3):586-92. PubMed ID: 19782417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: A prospective study.
    Harat M; Małkowski B; Makarewicz R
    Radiother Oncol; 2016 Aug; 120(2):241-7. PubMed ID: 27378734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer.
    Ashamalla H; Rafla S; Parikh K; Mokhtar B; Goswami G; Kambam S; Abdel-Dayem H; Guirguis A; Ross P; Evola A
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1016-23. PubMed ID: 15979817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative diagnostic accuracy of contrast-enhanced MRI and (18)F-FDOPA PET-CT in recurrent glioma.
    Karunanithi S; Sharma P; Kumar A; Khangembam BC; Bandopadhyaya GP; Kumar R; Goenka A; Gupta DK; Malhotra A; Bal C
    Eur Radiol; 2013 Sep; 23(9):2628-35. PubMed ID: 23624623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the accuracy of target volume delineation by combined use of computed tomography, magnetic resonance imaging and positron emission tomography in head and neck carcinomas.
    Chauhan D; Rawat S; Sharma MK; Ahlawat P; Pal M; Gupta G; Dewan A; Gupta M; Sharma S; Dodagoudar C; Pahuja A; Mitra S; Sharma SK
    J Cancer Res Ther; 2015; 11(4):746-51. PubMed ID: 26881512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas.
    Li FM; Nie Q; Wang RM; Chang SM; Zhao WR; Zhu Q; Liang YK; Yang P; Zhang J; Jia HW; Fang HH
    Nucl Med Biol; 2012 Apr; 39(3):437-42. PubMed ID: 22172386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of tumor volumes in skull base glomus tumors using Gluc-Lys[(18)F]-TOCA positron emission tomography.
    Astner ST; Bundschuh RA; Beer AJ; Ziegler SI; Krause BJ; Schwaiger M; Molls M; Grosu AL; Essler M
    Int J Radiat Oncol Biol Phys; 2009 Mar; 73(4):1135-40. PubMed ID: 18786781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma.
    Weber DC; Zilli T; Buchegger F; Casanova N; Haller G; Rouzaud M; Nouet P; Dipasquale G; Ratib O; Zaidi H; Vees H; Miralbell R
    Radiat Oncol; 2008 Dec; 3():44. PubMed ID: 19108742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of variability in target volume delineation for newly diagnosed glioblastoma: a multi-institutional study from the Korean Radiation Oncology Group.
    Wee CW; Sung W; Kang HC; Cho KH; Han TJ; Jeong BK; Jeong JU; Kim H; Kim IA; Kim JH; Kim SH; Kim S; Lee DS; Lee MY; Lim DH; Park HL; Suh CO; Yoon SM; Kim IH
    Radiat Oncol; 2015 Jul; 10():137. PubMed ID: 26134973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-painted volumetric modulated arc therapy of high-grade glioma using 3,4-dihydroxy-6-[
    Kosztyla R; Raman S; Moiseenko V; Reinsberg SA; Toyota B; Nichol A
    Br J Radiol; 2019 Jul; 92(1099):20180901. PubMed ID: 31017449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (18)F-Fluorothymidine PET-CT for resected malignant gliomas before radiotherapy: tumor extent according to proliferative activity compared with MRI.
    Zhao F; Li M; Wang Z; Fu Z; Cui Y; Chen Z; Yu J
    PLoS One; 2015; 10(3):e0118769. PubMed ID: 25738617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma.
    Hayes AR; Jayamanne D; Hsiao E; Schembri GP; Bailey DL; Roach PJ; Khasraw M; Newey A; Wheeler HR; Back M
    Pract Radiat Oncol; 2018; 8(4):230-238. PubMed ID: 29730279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. l-[METHYL-(11)C] methionine positron emission tomography for target delineation in malignant gliomas: impact on results of carbon ion radiotherapy.
    Mahasittiwat P; Mizoe JE; Hasegawa A; Ishikawa H; Yoshikawa K; Mizuno H; Yanagi T; Takagi R; Pattaranutaporn P; Tsujii H
    Int J Radiat Oncol Biol Phys; 2008 Feb; 70(2):515-22. PubMed ID: 17900820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineation of gross tumor volume (GTV) for radiation treatment planning of locally advanced rectal cancer using information from MRI or FDG-PET/CT: a prospective study.
    Brændengen M; Hansson K; Radu C; Siegbahn A; Jacobsson H; Glimelius B
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):e439-45. PubMed ID: 21641122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 63.