These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 2416183)
1. Diminished retrograde transport causes axonal dystrophy in the nucleus gracilis. Electron- and light-microscopic study. Yoshikawa H; Tarui S; Hashimoto PH Acta Neuropathol; 1985; 68(2):93-100. PubMed ID: 2416183 [TBL] [Abstract][Full Text] [Related]
2. Topographically organized projections from the nucleus subceruleus to the hypoglossal nucleus in the rat: a light and electron microscopic study with complementary axonal transport techniques. Aldes LD J Comp Neurol; 1990 Dec; 302(3):643-56. PubMed ID: 1702122 [TBL] [Abstract][Full Text] [Related]
3. Selective retrograde transport of D-aspartate in spinal interneurons and cortical neurons of rats. Rustioni A; Cuenod M Brain Res; 1982 Mar; 236(1):143-55. PubMed ID: 6175376 [TBL] [Abstract][Full Text] [Related]
4. Dystrophic axons in the nucleus gracilis of the normal rat containing cholecystokinin-like immunoreactivity. Light- and electron-microscopic observations. Matsuda T; Maeda M; Morishima Y; Hashimoto S; Tateishi K; Hamaoka T; Mizuta H; Takagi H Acta Neuropathol; 1985; 65(3-4):224-34. PubMed ID: 3976359 [TBL] [Abstract][Full Text] [Related]
6. Relationship of Met-enkephalin-like immunoreactivity to vagal afferents and motor dendrites in the nucleus of the solitary tract: a light and electron microscopic dual labeling study. Velley L; Milner TA; Chan J; Morrison SF; Pickel VM Brain Res; 1991 Jun; 550(2):298-312. PubMed ID: 1715806 [TBL] [Abstract][Full Text] [Related]
7. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. Kalia M; Mesulam MM J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777 [TBL] [Abstract][Full Text] [Related]
8. Partial sciatic nerve ligation induced more dramatic increase of neuropeptide Y immunoreactive axonal fibers in the gracile nucleus of middle-aged rats than in young adult rats. Ma W; Bisby MA J Neurosci Res; 2000 May; 60(4):520-30. PubMed ID: 10797555 [TBL] [Abstract][Full Text] [Related]
9. Anatomical studies of dorsal column axons and dorsal root ganglion cells after spinal cord injury in the newborn rat. Lahr SP; Stelzner DJ J Comp Neurol; 1990 Mar; 293(3):377-98. PubMed ID: 2324322 [TBL] [Abstract][Full Text] [Related]
10. The terminations of corticospinal tract axons in the macaque monkey. Ralston DD; Ralston HJ J Comp Neurol; 1985 Dec; 242(3):325-37. PubMed ID: 2418074 [TBL] [Abstract][Full Text] [Related]
11. Increased calcitonin gene-related peptide immunoreactivity in gracile nucleus after partial sciatic nerve injury: age-dependent and originating from spared sensory neurons. Ma W; Ramer MS; Bisby MA Exp Neurol; 1999 Oct; 159(2):459-73. PubMed ID: 10506517 [TBL] [Abstract][Full Text] [Related]
12. The synaptic relationships between the primary afferent terminals and the cuneo-thalamic relay neurons in the rat cuneate nucleus. Wen CY Proc Natl Sci Counc Repub China B; 1984 Jul; 8(3):254-67. PubMed ID: 6085999 [TBL] [Abstract][Full Text] [Related]
13. Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods. Dekker JJ Brain Res; 1981 Feb; 205(2):229-44. PubMed ID: 6162512 [TBL] [Abstract][Full Text] [Related]
14. Topography and synaptology of mamillary body projections to the mesencephalon and pons in the rat. Allen GV; Hopkins DA J Comp Neurol; 1990 Nov; 301(2):214-31. PubMed ID: 1702105 [TBL] [Abstract][Full Text] [Related]
15. Termination in trigeminal nucleus oralis of ascending intratrigeminal axons originating from neurons in the medullary dorsal horn: an HRP study in the rat employing light and electron microscopy. Falls WM Brain Res; 1984 Jan; 290(1):136-40. PubMed ID: 6692129 [TBL] [Abstract][Full Text] [Related]
16. Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. Ross CA; Ruggiero DA; Reis DJ J Comp Neurol; 1985 Dec; 242(4):511-34. PubMed ID: 2418079 [TBL] [Abstract][Full Text] [Related]
17. The amount of slow axonal transport is proportional to the radial dimensions of the axon. Wujek JR; Lasek RJ; Gambetti P J Neurocytol; 1986 Feb; 15(1):75-83. PubMed ID: 2423651 [TBL] [Abstract][Full Text] [Related]
18. Dorsal root ganglion neurons projecting to the dorsal column nuclei of rats. Giuffrida R; Rustioni A J Comp Neurol; 1992 Feb; 316(2):206-20. PubMed ID: 1374085 [TBL] [Abstract][Full Text] [Related]
19. Organization of projections from the principal sensory trigeminal nucleus to the hypoglossal nucleus in the rat: an experimental light and electron microscopic study with axonal tracer techniques. Aldes LD; Boone TB Exp Brain Res; 1985; 59(1):16-29. PubMed ID: 4018194 [TBL] [Abstract][Full Text] [Related]
20. Anterograde transsynaptic transport of WGA-HRP from spinal afferents to postganglionic sympathetic cells of the stellate ganglion of the guinea pig. Quigg M; Elfvin LG; Aldskogius H Brain Res; 1990 Jun; 518(1-2):173-8. PubMed ID: 1697207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]