BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 24161921)

  • 1. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.
    Liu J; Zhang W; Du G; Chen J; Zhou J
    J Biotechnol; 2013 Dec; 168(4):446-51. PubMed ID: 24161921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J; Bao X; Li C; Shen Y; Hou J
    Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.
    Zhao J; Li C; Zhang Y; Shen Y; Hou J; Bao X
    Microb Cell Fact; 2017 Jan; 16(1):17. PubMed ID: 28137282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli.
    Chen F; Li W; Jiang L; Pu X; Yang Y; Zhang G; Luo Y
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1281-92. PubMed ID: 27349769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae.
    Jiang GZ; Yao MD; Wang Y; Zhou L; Song TQ; Liu H; Xiao WH; Yuan YJ
    Metab Eng; 2017 May; 41():57-66. PubMed ID: 28359705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geranyl diphosphate synthase: an important regulation point in balancing a recombinant monoterpene pathway in Escherichia coli.
    Zhou J; Wang C; Yang L; Choi ES; Kim SW
    Enzyme Microb Technol; 2015 Jan; 68():50-5. PubMed ID: 25435505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient production of (S)-limonene and geraniol in Saccharomyces cerevisiae through the utilization of an Erg20 mutant with enhanced GPP accumulation capability.
    Bernard A; Cha S; Shin H; Lee D; Hahn JS
    Metab Eng; 2024 May; 83():183-192. PubMed ID: 38631459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A homomeric geranyl diphosphate synthase-encoding gene from Camptotheca acuminata and its combinatorial optimization for production of geraniol in Escherichia coli.
    Yang L; Jiang L; Li W; Yang Y; Zhang G; Luo Y
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1431-1441. PubMed ID: 28695386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase.
    Ignea C; Pontini M; Maffei ME; Makris AM; Kampranis SC
    ACS Synth Biol; 2014 May; 3(5):298-306. PubMed ID: 24847684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.
    Gutensohn M; Orlova I; Nguyen TT; Davidovich-Rikanati R; Ferruzzi MG; Sitrit Y; Lewinsohn E; Pichersky E; Dudareva N
    Plant J; 2013 Aug; 75(3):351-63. PubMed ID: 23607888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain.
    Pardo E; Rico J; Gil JV; Orejas M
    Microb Cell Fact; 2015 Sep; 14():136. PubMed ID: 26377186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway.
    Zhang Y; Cao X; Wang J; Tang F
    Microb Cell Fact; 2022 Oct; 21(1):212. PubMed ID: 36243714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae].
    Sun M; Liu J; Du G; Zhou J; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2013 Jun; 29(6):751-9. PubMed ID: 24063235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monoterpenoid biosynthesis in Saccharomyces cerevisiae.
    Oswald M; Fischer M; Dirninger N; Karst F
    FEMS Yeast Res; 2007 May; 7(3):413-21. PubMed ID: 17096665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids.
    Dusséaux S; Wajn WT; Liu Y; Ignea C; Kampranis SC
    Proc Natl Acad Sci U S A; 2020 Dec; 117(50):31789-31799. PubMed ID: 33268495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of the mevalonate pathway for enhanced isoprenoid production.
    Liao P; Hemmerlin A; Bach TJ; Chye ML
    Biotechnol Adv; 2016; 34(5):697-713. PubMed ID: 26995109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoterpene biosynthesis potential of plant subcellular compartments.
    Dong L; Jongedijk E; Bouwmeester H; Van Der Krol A
    New Phytol; 2016 Jan; 209(2):679-90. PubMed ID: 26356766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extrachromosomal Genetic Engineering of the Marine Diatom
    Fabris M; George J; Kuzhiumparambil U; Lawson CA; Jaramillo-Madrid AC; Abbriano RM; Vickers CE; Ralph P
    ACS Synth Biol; 2020 Mar; 9(3):598-612. PubMed ID: 32032487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli.
    Liu W; Zhang R; Tian N; Xu X; Cao Y; Xian M; Liu H
    Bioengineered; 2015; 6(5):288-93. PubMed ID: 26091008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation.
    Zhou J; Wang C; Yoon SH; Jang HJ; Choi ES; Kim SW
    J Biotechnol; 2014 Jan; 169():42-50. PubMed ID: 24269531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.