BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24162069)

  • 1. The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation.
    Yin XM; Ding WX
    Autophagy; 2013 Nov; 9(11):1687-92. PubMed ID: 24162069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deubiquitinating enzymes regulate PARK2-mediated mitophagy.
    Wang Y; Serricchio M; Jauregui M; Shanbhag R; Stoltz T; Di Paolo CT; Kim PK; McQuibban GA
    Autophagy; 2015 Apr; 11(4):595-606. PubMed ID: 25915564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria.
    Wong YC; Holzbaur EL
    Autophagy; 2015; 11(2):422-4. PubMed ID: 25801386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects.
    Callegari S; Oeljeklaus S; Warscheid B; Dennerlein S; Thumm M; Rehling P; Dudek J
    Autophagy; 2017 Jan; 13(1):201-211. PubMed ID: 27846363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming.
    Ding WX; Ni HM; Li M; Liao Y; Chen X; Stolz DB; Dorn GW; Yin XM
    J Biol Chem; 2010 Sep; 285(36):27879-90. PubMed ID: 20573959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BECN1 is involved in the initiation of mitophagy: it facilitates PARK2 translocation to mitochondria.
    Choubey V; Cagalinec M; Liiv J; Safiulina D; Hickey MA; Kuum M; Liiv M; Anwar T; Eskelinen EL; Kaasik A
    Autophagy; 2014 Jun; 10(6):1105-19. PubMed ID: 24879156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation.
    Ding WX; Guo F; Ni HM; Bockus A; Manley S; Stolz DB; Eskelinen EL; Jaeschke H; Yin XM
    J Biol Chem; 2012 Dec; 287(50):42379-88. PubMed ID: 23095748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel protein complexes containing autophagy and UPS components regulate proteasome-dependent PARK2 recruitment onto mitochondria and PARK2-PARK6 activity during mitophagy.
    Kocaturk NM; Peker N; Eberhart K; Akkoc Y; Deveci G; Dengjel J; Gozuacik D
    Cell Death Dis; 2022 Nov; 13(11):947. PubMed ID: 36357363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy.
    Xian H; Liou YC
    Autophagy; 2019 Dec; 15(12):2107-2125. PubMed ID: 30894073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The PARK2/Parkin receptor on damaged mitochondria revisited-uncovering the role of phosphorylated ubiquitin chains.
    Matsuda N; Tanaka K
    Autophagy; 2015; 11(9):1700-1. PubMed ID: 26213095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. USP8 and PARK2/parkin-mediated mitophagy.
    Durcan TM; Fon EA
    Autophagy; 2015; 11(2):428-9. PubMed ID: 25700639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway.
    Gao F; Chen D; Si J; Hu Q; Qin Z; Fang M; Wang G
    Hum Mol Genet; 2015 May; 24(9):2528-38. PubMed ID: 25612572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy.
    Cornelissen T; Haddad D; Wauters F; Van Humbeeck C; Mandemakers W; Koentjoro B; Sue C; Gevaert K; De Strooper B; Verstreken P; Vandenberghe W
    Hum Mol Genet; 2014 Oct; 23(19):5227-42. PubMed ID: 24852371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy.
    Chan NC; Salazar AM; Pham AH; Sweredoski MJ; Kolawa NJ; Graham RL; Hess S; Chan DC
    Hum Mol Genet; 2011 May; 20(9):1726-37. PubMed ID: 21296869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase.
    Fu M; St-Pierre P; Shankar J; Wang PT; Joshi B; Nabi IR
    Mol Biol Cell; 2013 Apr; 24(8):1153-62. PubMed ID: 23427266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance.
    Bertolin G; Ferrando-Miguel R; Jacoupy M; Traver S; Grenier K; Greene AW; Dauphin A; Waharte F; Bayot A; Salamero J; Lombès A; Bulteau AL; Fon EA; Brice A; Corti O
    Autophagy; 2013 Nov; 9(11):1801-17. PubMed ID: 24149440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy.
    Wang Y; Nartiss Y; Steipe B; McQuibban GA; Kim PK
    Autophagy; 2012 Oct; 8(10):1462-76. PubMed ID: 22889933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. USP33 deubiquitinates PRKN/parkin and antagonizes its role in mitophagy.
    Niu K; Fang H; Chen Z; Zhu Y; Tan Q; Wei D; Li Y; Balajee AS; Zhao Y
    Autophagy; 2020 Apr; 16(4):724-734. PubMed ID: 31432739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin.
    Durcan TM; Tang MY; Pérusse JR; Dashti EA; Aguileta MA; McLelland GL; Gros P; Shaler TA; Faubert D; Coulombe B; Fon EA
    EMBO J; 2014 Nov; 33(21):2473-91. PubMed ID: 25216678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long time-lapse imaging reveals unique features of PARK2/Parkin-mediated mitophagy in mature cortical neurons.
    Cai Q; Zakaria HM; Sheng ZH
    Autophagy; 2012 Jun; 8(6):976-8. PubMed ID: 22739253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.