These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 24162080)

  • 1. Simulation of non-Abelian gauge theories with optical lattices.
    Tagliacozzo L; Celi A; Orland P; Mitchell MW; Lewenstein M
    Nat Commun; 2013; 4():2615. PubMed ID: 24162080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms.
    Stannigel K; Hauke P; Marcos D; Hafezi M; Diehl S; Dalmonte M; Zoller P
    Phys Rev Lett; 2014 Mar; 112(12):120406. PubMed ID: 24724634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.
    Banerjee D; Bögli M; Dalmonte M; Rico E; Stebler P; Wiese UJ; Zoller P
    Phys Rev Lett; 2013 Mar; 110(12):125303. PubMed ID: 25166816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ
    Barbiero L; Schweizer C; Aidelsburger M; Demler E; Goldman N; Grusdt F
    Sci Adv; 2019 Oct; 5(10):eaav7444. PubMed ID: 31646173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
    Mezzacapo A; Rico E; Sabín C; Egusquiza IL; Lamata L; Solano E
    Phys Rev Lett; 2015 Dec; 115(24):240502. PubMed ID: 26705616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Simulation of the Universal Features of the Polyakov Loop.
    Zhang J; Unmuth-Yockey J; Zeiher J; Bazavov A; Tsai SW; Meurice Y
    Phys Rev Lett; 2018 Nov; 121(22):223201. PubMed ID: 30547605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
    Martinez EA; Muschik CA; Schindler P; Nigg D; Erhard A; Heyl M; Hauke P; Dalmonte M; Monz T; Zoller P; Blatt R
    Nature; 2016 Jun; 534(7608):516-9. PubMed ID: 27337339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional lattice gauge theories with superconducting quantum circuits.
    Marcos D; Widmer P; Rico E; Hafezi M; Rabl P; Wiese UJ; Zoller P
    Ann Phys (N Y); 2014 Dec; 351():634-654. PubMed ID: 25512676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold atoms meet lattice gauge theory.
    Aidelsburger M; Barbiero L; Bermudez A; Chanda T; Dauphin A; González-Cuadra D; Grzybowski PR; Hands S; Jendrzejewski F; Jünemann J; Juzeliūnas G; Kasper V; Piga A; Ran SJ; Rizzi M; Sierra G; Tagliacozzo L; Tirrito E; Zache TV; Zakrzewski J; Zohar E; Lewenstein M
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210064. PubMed ID: 34923836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-abelian gauge fields and topological insulators in shaken optical lattices.
    Hauke P; Tieleman O; Celi A; Olschläger C; Simonet J; Struck J; Weinberg M; Windpassinger P; Sengstock K; Lewenstein M; Eckardt A
    Phys Rev Lett; 2012 Oct; 109(14):145301. PubMed ID: 23083256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale for the phase diagram of quantum chromodynamics.
    Gupta S; Luo X; Mohanty B; Ritter HG; Xu N
    Science; 2011 Jun; 332(6037):1525-8. PubMed ID: 21700867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From quantum link models to D-theory: a resource efficient framework for the quantum simulation and computation of gauge theories.
    Wiese UJ
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210068. PubMed ID: 34923839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confinement in the Bulk, Deconfinement on the Wall: Infrared Equivalence between Compactified QCD and Quantum Magnets.
    Sulejmanpasic T; Shao H; Sandvik AW; Ünsal M
    Phys Rev Lett; 2017 Sep; 119(9):091601. PubMed ID: 28949566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can one trust quantum simulators?
    Hauke P; Cucchietti FM; Tagliacozzo L; Deutsch I; Lewenstein M
    Rep Prog Phys; 2012 Aug; 75(8):082401. PubMed ID: 22828179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum simulation of lattice gauge theories in more than one space dimension-requirements, challenges and methods.
    Zohar E
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210069. PubMed ID: 34923840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-insulator transition revisited for cold atoms in non-Abelian gauge potentials.
    Satija II; Dakin DC; Clark CW
    Phys Rev Lett; 2006 Nov; 97(21):216401. PubMed ID: 17155755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Non-Abelian Gauge Fields for Non-Hermitian Systems.
    Pang Z; Wong BTT; Hu J; Yang Y
    Phys Rev Lett; 2024 Jan; 132(4):043804. PubMed ID: 38335358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator.
    Yang B; Sun H; Ott R; Wang HY; Zache TV; Halimeh JC; Yuan ZS; Hauke P; Pan JW
    Nature; 2020 Nov; 587(7834):392-396. PubMed ID: 33208959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.