These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24162513)

  • 1. 2-Aminoethylphosphonate utilization by the cold-adapted Geomyces pannorum P11 strain.
    Klimek-Ochab M; Mucha A; ZymaƄczyk-Duda E
    Curr Microbiol; 2014 Mar; 68(3):330-5. PubMed ID: 24162513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15.
    Klimek-Ochab M
    Folia Microbiol (Praha); 2014 Sep; 59(5):375-80. PubMed ID: 24570323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM.
    Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP
    Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of two new microbial strains capable of degradation of the naturally occurring organophosphonate - ciliatine.
    Klimek-Ochab M; Obojska A; Picco AM; Lejczak B
    Biodegradation; 2007 Apr; 18(2):223-31. PubMed ID: 16758270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021.
    Borisova SA; Christman HD; Metcalf ME; Zulkepli NA; Zhang JK; van der Donk WA; Metcalf WW
    J Biol Chem; 2011 Jun; 286(25):22283-90. PubMed ID: 21543322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation pathway of the phosphonate ciliatine: crystal structure of 2-aminoethylphosphonate transaminase.
    Chen CC; Zhang H; Kim AD; Howard A; Sheldrick GM; Mariano-Dunaway D; Herzberg O
    Biochemistry; 2002 Nov; 41(44):13162-9. PubMed ID: 12403617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Degradation of ciliatine (2-aminoethylphosphonic acid) by the mutant strain Tm-1 of Escherichia coli (author's transl)].
    Tamari M; Horiguchi M
    Seikagaku; 1976 Aug; 48(8):810-3. PubMed ID: 799167
    [No Abstract]   [Full Text] [Related]  

  • 10. Utilization of 2-aminoethylarsonic acid in Pseudomonas aeruginosa.
    Lacoste AM; Dumora C; Ali BR; Neuzil E; Dixon HB
    J Gen Microbiol; 1992 Jun; 138(6):1283-7. PubMed ID: 1527499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 2-aminoethylphosphonate-specific transaminase of the 2-aminoethylphosphonate degradation pathway.
    Kim AD; Baker AS; Dunaway-Mariano D; Metcalf WW; Wanner BL; Martin BM
    J Bacteriol; 2002 Aug; 184(15):4134-40. PubMed ID: 12107130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Aminoethylphosphonic acid metabolism in the rat.
    Joseph JC; Henderson TO
    Lipids; 1977 Jan; 12(1):75-84. PubMed ID: 834125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the mechanism of catalysis by the P-C bond-cleaving enzyme phosphonoacetaldehyde hydrolase derived from gene sequence analysis and mutagenesis.
    Baker AS; Ciocci MJ; Metcalf WW; Kim J; Babbitt PC; Wanner BL; Martin BM; Dunaway-Mariano D
    Biochemistry; 1998 Jun; 37(26):9305-15. PubMed ID: 9649311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Lipid synthesis by Geomyces pannorum under the impact of stress factors].
    Konova IV; Sergeeva IaE; Galanina LA; Kochkina GA; Ivanushkina NE; Ozerskaia SM
    Mikrobiologiia; 2009; 78(1):52-8. PubMed ID: 19334597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo incorporation of cytidine-monophosphate-ciliatine into rat liver lipids.
    Tamari M; Cassaigne A; Lacoste AM; Neuzil E
    Biochimie; 1975; 57(1):97-103. PubMed ID: 1148325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [2-Amino-ethylphosphonic acid transport in Pseudomonas aeruginosa].
    Lacoste AM; Cassaigne A; Tamari M; Neuzil E
    Biochimie; 1976; 58(6):703-12. PubMed ID: 821545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of a 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa PAO1.
    Jia H; Chen Y; Chen Y; Liu R; Zhang Q; Bartlam M
    Biochem Biophys Res Commun; 2021 May; 552():114-119. PubMed ID: 33743347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complete mitochondrial genome of the cold-adapted fungus Pseudogymnoascus pannorum syn. Geomyces pannorum.
    Zhang YJ; Huo LQ; Zhang S; Liu XZ
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Jul; 27(4):2566-7. PubMed ID: 26024141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Bacillus cereus phosphonoacetaldehyde hydrolase. Evidence for a Schiff base mechanism and sequence analysis of an active-site peptide containing the catalytic lysine residue.
    Olsen DB; Hepburn TW; Moos M; Mariano PS; Dunaway-Mariano D
    Biochemistry; 1988 Mar; 27(6):2229-34. PubMed ID: 3132206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.
    Pannkuk EL; Blair HB; Fischer AE; Gerdes CL; Gilmore DF; Savary BJ; Risch TS
    Fungal Biol; 2014; 118(9-10):792-9. PubMed ID: 25209638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.