BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24162561)

  • 21. Set cover-based methods for motif selection.
    Li Y; Liu Y; Juedes D; Drews F; Bunescu R; Welch L
    Bioinformatics; 2020 Feb; 36(4):1044-1051. PubMed ID: 31665223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. fCCAC: functional canonical correlation analysis to evaluate covariance between nucleic acid sequencing datasets.
    Madrigal P
    Bioinformatics; 2017 Mar; 33(5):746-748. PubMed ID: 27993776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DiscMLA: An Efficient Discriminative Motif Learning Algorithm over High-Throughput Datasets.
    Zhang H; Zhu L; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1810-1820. PubMed ID: 27164602
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Zeng J; Li G
    Int J Biol Sci; 2018; 14(12):1724-1731. PubMed ID: 30416387
    [No Abstract]   [Full Text] [Related]  

  • 25. Direct ChIP-Seq significance analysis improves target prediction.
    Bansal M; Mendiratta G; Anand S; Kushwaha R; Kim R; Kustagi M; Iyer A; Chaganti RS; Califano A; Sumazin P
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S4. PubMed ID: 26040656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AIControl: replacing matched control experiments with machine learning improves ChIP-seq peak identification.
    Hiranuma N; Lundberg SM; Lee SI
    Nucleic Acids Res; 2019 Jun; 47(10):e58. PubMed ID: 30869146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
    Chen L; Wang C; Qin ZS; Wu H
    Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovering motifs in ranked lists of DNA sequences.
    Eden E; Lipson D; Yogev S; Yakhini Z
    PLoS Comput Biol; 2007 Mar; 3(3):e39. PubMed ID: 17381235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data.
    Goi C; Little P; Xie C
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S2. PubMed ID: 24564528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps.
    Setty M; Leslie CS
    PLoS Comput Biol; 2015 May; 11(5):e1004271. PubMed ID: 26016777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of transcription factor binding map accuracy utilizing knockout-mouse models.
    Krebs W; Schmidt SV; Goren A; De Nardo D; Labzin L; Bovier A; Ulas T; Theis H; Kraut M; Latz E; Beyer M; Schultze JL
    Nucleic Acids Res; 2014 Dec; 42(21):13051-60. PubMed ID: 25378309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ChIPWig: a random access-enabling lossless and lossy compression method for ChIP-seq data.
    Ravanmehr V; Kim M; Wang Z; Milenkovic O
    Bioinformatics; 2018 Mar; 34(6):911-919. PubMed ID: 29087447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probabilistic partitioning methods to find significant patterns in ChIP-Seq data.
    Nair NU; Kumar S; Moret BM; Bucher P
    Bioinformatics; 2014 Sep; 30(17):2406-13. PubMed ID: 24812341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.
    Stricker G; Engelhardt A; Schulz D; Schmid M; Tresch A; Gagneur J
    Bioinformatics; 2017 Aug; 33(15):2258-2265. PubMed ID: 28369277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A single ChIP-seq dataset is sufficient for comprehensive analysis of motifs co-occurrence with MCOT package.
    Levitsky V; Zemlyanskaya E; Oshchepkov D; Podkolodnaya O; Ignatieva E; Grosse I; Mironova V; Merkulova T
    Nucleic Acids Res; 2019 Dec; 47(21):e139. PubMed ID: 31750523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. THiCweed: fast, sensitive detection of sequence features by clustering big datasets.
    Agrawal A; Sambare SV; Narlikar L; Siddharthan R
    Nucleic Acids Res; 2018 Mar; 46(5):e29. PubMed ID: 29267972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CNV-guided multi-read allocation for ChIP-seq.
    Zhang Q; Keleş S
    Bioinformatics; 2014 Oct; 30(20):2860-7. PubMed ID: 24966364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The value of position-specific priors in motif discovery using MEME.
    Bailey TL; Bodén M; Whitington T; Machanick P
    BMC Bioinformatics; 2010 Apr; 11():179. PubMed ID: 20380693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.