BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24162578)

  • 1. A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca.
    Kostylev M; Wilson D
    Appl Environ Microbiol; 2014 Jan; 80(1):339-44. PubMed ID: 24162578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aromatic residues surrounding the active site tunnel of TfCel48A influence activity, processivity, and synergistic interactions with other cellulases.
    Hefferon KL; Cantero-Tubilla B; Brady J; Wilson D
    Biotechnol Bioeng; 2019 Oct; 116(10):2463-2472. PubMed ID: 31184375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cel48A from Thermobifida fusca: structure and site directed mutagenesis of key residues.
    Kostylev M; Alahuhta M; Chen M; Brunecky R; Himmel ME; Lunin VV; Brady J; Wilson DB
    Biotechnol Bioeng; 2014 Apr; 111(4):664-73. PubMed ID: 24264519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the molecular states of the processive endocellulase Thermobifida fusca Cel9A during crystalline cellulose depolymerization.
    Kostylev M; Moran-Mirabal JM; Walker LP; Wilson DB
    Biotechnol Bioeng; 2012 Jan; 109(1):295-9. PubMed ID: 21837665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulase processivity.
    Wilson DB; Kostylev M
    Methods Mol Biol; 2012; 908():93-9. PubMed ID: 22843392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic transformations of cellulose assessed by quantitative high-throughput fourier transform infrared spectroscopy (QHT-FTIR).
    Corgié SC; Smith HM; Walker LP
    Biotechnol Bioeng; 2011 Jul; 108(7):1509-20. PubMed ID: 21337332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy.
    Moran-Mirabal JM; Bolewski JC; Walker LP
    Biophys Chem; 2011 Apr; 155(1):20-8. PubMed ID: 21396764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca.
    Escovar-Kousen JM; Wilson D; Irwin D
    Appl Biochem Biotechnol; 2004; 113-116():287-97. PubMed ID: 15054213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae.
    van Wyk N; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1813-20. PubMed ID: 20449742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-parameter kinetic model based on a time-dependent activity coefficient accurately describes enzymatic cellulose digestion.
    Kostylev M; Wilson D
    Biochemistry; 2013 Aug; 52(33):5656-64. PubMed ID: 23837567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic Signatures of Substrate Binding for Three Thermobifida fusca Cellulases with Different Modes of Action.
    Hamre AG; Kaupang A; Payne CM; Väljamäe P; Sørlie M
    Biochemistry; 2019 Mar; 58(12):1648-1659. PubMed ID: 30785271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergism in binary mixtures of Thermobifida fusca cellulases Cel6B, Cel9A, and Cel5A on BMCC and Avicel.
    Watson DL; Wilson DB; Walker LP
    Appl Biochem Biotechnol; 2002 May; 101(2):97-111. PubMed ID: 12049205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III.
    Chundawat SPS; Nemmaru B; Hackl M; Brady SK; Hilton MA; Johnson MM; Chang S; Lang MJ; Huh H; Lee SH; Yarbrough JM; López CA; Gnanakaran S
    J Biol Chem; 2021; 296():100431. PubMed ID: 33610545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A.
    Li Y; Irwin DC; Wilson DB
    Appl Environ Microbiol; 2007 May; 73(10):3165-72. PubMed ID: 17369336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose.
    Jung H; Wilson DB; Walker LP
    Biotechnol Bioeng; 2003 Oct; 84(2):151-9. PubMed ID: 12966571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
    Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA
    J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.
    Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B.
    Vuong TV; Wilson DB
    Appl Environ Microbiol; 2009 Nov; 75(21):6655-61. PubMed ID: 19734341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes.
    Moraïs S; Morag E; Barak Y; Goldman D; Hadar Y; Lamed R; Shoham Y; Wilson DB; Bayer EA
    mBio; 2012 Dec; 3(6):. PubMed ID: 23232718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitin binding by Thermobifida fusca cellulase catalytic domains.
    Li Y; Wilson DB
    Biotechnol Bioeng; 2008 Jul; 100(4):644-52. PubMed ID: 18306418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.